- 两条平行直线间的距离
- 共3题
5.若直线与平行,则与间的距离为( )
正确答案
解析
因为两直线平行,所以,化简得,解得a=3或a=-1,当a=3时,两条直线重合,舍去,所以a=-1。所以可得:L1:X-Y+6=0,L2:-3X+3Y-2=0取直线L1上的一点,不妨取(0,6),利用点到直线的距离公式求解,所以
考查方向
解题思路
利用两条直线平行与斜率的关系即可得出
易错点
直线平行和直线垂直的斜率关系记忆混淆
知识点
已知函数.其中.
(1)若曲线y=f(x)与y=g(x)在x=1处的切线相互平行,求两平行直线间的距离;
(2)若f(x)≤g(x)-1对任意x>0恒成立,求实数a的值;
(3)当a<0时,对于函数h(x)=f(x)-g(x)+1,记在h(x)图象上任取两点A、B连线的斜率为,若,求a的取值范围.
正确答案
见解析
解析
(1),依题意得:a=2; ……………2分
曲线y=f(x)在x=1处的切线为2x-y-2=0,
曲线y=g(x)在x=1处的切线方程为2x-y-1=0. ……………3分
两直线间的距离为……………4分
(2)令h(x)=f(x)-g(x)+1, ,则
当a≤0时, 注意到x>0, 所以<0, 所以h(x)在(0,+∞)单调递减, ………………5分
又h(1)=0,故0<x<1时,h(x)>0,即f(x)> g(x)-1,与题设矛盾. ……………6分
当a>0时,
当,当时,
所以h(x)在上是增函数,在上是减函数, ……………8分
∴h(x)≤
因为h(1)=0,又当a≠2时,≠1,与不符.
所以a=2. ……………9分
(3)当a<0时,由(2)知<0,∴h(x)在(0,+∞)上是减函数,
不妨设0<x1≤x2,则|h(x1)-h(x2)|=h(x1)-h(x2),|x1-x2|=x2-x1, ……………10分
∴|h(x1)-h(x2)|≥|x1-x2
等价于h(x1)-h(x2)≥x2-x1,即h(x1)+x1≥h(x2)+x2, ……………11分
令H(x)=h(x)+x=alnx-x2+x+1,H(x)在(0,+∞)上是减函数,
∵ (x>0), ……………12分
∴-2x2+x+a≤0在x>0时恒成立,∴a≤(2x2-x)min ……………13分
又x>0时, (2x2-x)min=
∴a≤-,又a<0,∴a的取值范围是. ……………14分
知识点
14.若点是曲线上任意一点,则点到直线的最小距离为( )
正确答案
解析
本题主要考查了曲线的切线方程、线线之间的距离等知识点。
解:因为,设点P(x0,y0)(x0>0),则切线的斜率,当切线与y=x-2平行时,点P到直线距离最小,所以,解得x0=1或 (舍去)。当时,y0=1,所以点P(1,1),直线方程化为x-y-2=0,所以距离d=。
考查方向
本题主要考查了曲线的切线方程、线线之间的距离等知识点,难度中等,是高考热点之一,考查学生分析问题与转化问题的能力。
易错点
本题必须注意把点线之间的距离转化为两条平行线之间的距离,否则会导致无法求出.
知识点
扫码查看完整答案与解析