- 抛物线的定义
- 共1334题
设直线l:x-y+m=0与抛物线C:y2=4x交于不同两点A,B,F为抛物线的焦点.
(1)求△ABF的重心G的轨迹方程;
(2)如果m=-2,求△ABF的外接圆的方程.
正确答案
(1)y=(2)
2+
2=
(1)设A(x1,y1),B(x2,y2),F(1,0),重心G(x,y),
⇒y2-4y+4m=0,
∴Δ>0⇒m<1且m≠-1(A,B,F不共线),
故
∴重心G的轨迹方程为y=.
(2)若m=-2,则y2-4y-8=0,设AB中点为(x0,y0,)
∴y0==2,∴x0=y0-m=2-m=4,
那么AB的中垂线方程为x+y-6=0,
令△ABF的外接圆圆心为C(a,6-a),
又|AB|=|y1-y2|=4
,C到AB的距离为d=
,∴|CA|=|CF|⇒(2
)2+
2=(a-1)2+(6-a)2⇒a=
,
∴C点的坐标为,∴|CF|2=
2+
2=
,
∴所求的圆的方程为2+
2=
.
正方形的两顶点
在抛物线
上,
两点在直线
上,求正方形的边长
。
正确答案
或
设两点坐标分别为
、
,显然
∵
∥
,∴
,即
一方面,
∴ ① 。另一方面,
,∴
②
将①代入②,得,即
。故
或
从抛物线上一点
引其准线的垂线,垂足为
,设抛物线的焦点为
,且
,则
的面积为
正确答案
10
略
如图,直线l:y=x+b与抛物线C:x2=4y相切于点A.
(1)求实数b的值.
(2)求以点A为圆心,且与抛物线C的准线相切的圆的方程.
正确答案
(1) b=-1 (2) (x-2)2+(y-1)2=4
(1)由得x2-4x-4b=0 (*)
因为直线l与抛物线C相切,所以Δ=(-4)2-4×(-4b)=0.解得b=-1.
(2)由(1)可知b=-1,故方程(*)为x2-4x+4=0.
解得x=2,代入x2=4y,得y=1,故点A(2,1).
因为圆A与抛物线C的准线相切,
所以圆A的半径r就等于圆心A到抛物线的准线y=-1的距离,
即r=|1-(-1)|=2,
所以圆A的方程为(x-2)2+(y-1)2=4.
:如图,在平面直角坐标系xoy中,抛物线y=x2-
x-10与x轴的交点为A,与y轴的交点为点B,过点B作x轴的平行线BC,交抛物线于点C,连结AC.现有两动点P,Q分别从O,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动.线段OC,PQ相交于点D,过点D作DE∥OA,交CA于点E,射线QE交x轴于点F.设动点P,Q移动的时间为t(单位:秒)
(1)求A,B,C三点的坐标和抛物线的顶点坐标;
(2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程;
(3)当t∈(0,)时,△PQF的面积是否总为定值?若是,求出此定值;若不是,请说明理由;
(4)当t为何值时,△PQF为等腰三角形?请写出解答过程.
正确答案
:略
:(1)在y=x2-
x-10中,令y=0,得x2-8x-180=0.
解得x=-10或x=18,∴A(18,0).····················································· 1分
在y=x2-
x-10中,令x=0,得y=-10.
∴B(0,-10).································· 2分
∵BC∥x轴,∴点C的纵坐标为-10.
由-10=x2-
x-10得x=0或x=8.
∴C(8,-10).·································· 3分
∵y=x2-
x-10=
(x-4)2-
∴抛物线的顶点坐标为(4,-
). 4分
(2)若四边形PQCA为平行四边形,由于QC∥PA,故只要QC=PA即可.
∵QC=t,PA=18-4t,∴t=18-4t.
解得t=.·························································································· 6分
(3)设点P运动了t秒,则OP=4t,QC=t,且0<t<4.5,说明点P在线段OA上,且不与点O,A重合.
∵QC∥OP, ∴=
=
=
=
.
同理QC∥AF,∴=
=
=
,即
=
.
∴AF=4t=OP.
∴PF=PA+AF=PA+OP=18.································································· 8分
∴S△PQF=PF·OB=
×18×10=90
∴△PQF的面积总为定值90.································································· 9分
(4)设点P运动了t秒,则P(4t,0),F(18+4t,0),Q(8-t,-10) t∈(0,4.5).
∴PQ2=(4t-8+t)2+102=(5t-8)2+100
FQ2=(18+4t-8+t)2+102=(5t+10)2+100.
①若FP=FQ,则182=(5t+10)2+100.
即25(t+2)2=224,(t+2)2=.
∵0≤t≤4.5,∴2≤t+2≤6.5,∴t+2==
.
∴t=-2.··················································································· 11分
②若QP=QF,则(5t-8)2+100=(5t+10)2+100.
即(5t-8)2=(5t+10)2,无0≤t≤4.5的t满足.·································· 12分
③若PQ=PF,则(5t-8)2+100=182.
即(5t-8)2=224,由于≈15,又0≤5t≤22.5,
∴-8≤5t-8≤14.5,而14.52=()2=
<224.
故无0≤t≤4.5的t满足此方程.·························································· 13分
注:也可解出t=<0或t=
>4.5均不合题意,
故无0≤t≤4.5的t满足此方程.
综上所述,当t=-2时,△PQF为等腰三角形.·························· 14分
扫码查看完整答案与解析