- 万有引力与航天
- 共16469题
在地面附近的P点将卫星发射后(发生受到为vp),卫星只在地球对其的万有引力作用下绕地球做椭圆运动(设椭圆轨道为轨道1).运动到远地点Q时卫星的速度为vQ,然后瞬间加速(开动卫星上的发动机向后喷气)使卫星转移到同步轨道Ⅱ上绕地球做匀速圆周运动.其运行速度为v2,已知地球的第一宇宙速度为v1,地球自转周期为T转,卫星在轨道Ⅰ上运行周期为T1,在轨道Ⅱ上已知周期为T2,下列说法正确的有( )
正确答案
解析
解:A、据题,卫星的发射速度为vp时,卫星绕地球做椭圆运动,则知vp>v1=7.9km/s
若将发射速度vP增大到2vP=15.8km/s,大于第二宇宙速度11.2km/s,小于第三宇宙速度16.7km/s,则卫星将脱离地球而绕太阳运行,故A错误.
B、根据G=ma,知a=
,可知同一点加速度相同,故B正确.
C、由卫星的速度公式v=知,v1>v2.卫星在远地点Q时加速做离心运动,则v2>vQ.综上有vP>v1>v2>vQ.故C正确.
D、根据同步地球卫星的条件知T2=T转,根据开普勒第三定律知T2>T1,故D错误.
故选:BC.
如图所示,在地球轨道外侧有一小行星带.假设行星带中的小行星都只受到太阳的引力,并绕太阳做匀速圆周运动.下列说法正确的是( )
正确答案
解析
解:A、根据万有引力提供向心力得:T=2π,离太阳越远,周期越大,所以各小行星绕太阳运动的周期大于地球的公转周期,故A错误;
B、根据万有引力提供向心力得:v=,所以小行星带内各小行星圆周运动的线速度值小于地球公转的线速度值,故B正确;
C、根据万有引力提供向心力得:a=,所以小行星带内侧小行星的向心加速度大于外侧小行星的向心加速度值,故C错误;
D、由于各小行星的质量不同,所以太阳对各小行星的引力可能不同,故D错误.
故选:B
2008年9月25日至28日我国成功实施了“神舟”七号载入航天飞行并实现了航天员首次出舱.飞船先沿椭圆轨道飞行,后在远地点343千米处点火加速,由椭圆轨道变成高度为343千米的圆轨道,在此圆轨道上飞船运行周期约为90分钟.下列判断正确的是( )
正确答案
解析
解:A、因为飞船在远地点处点火加速,外力对飞船做功,故飞船在此过程中机械能增加,故A错误;
B、飞船在圆轨道上时,航天员出舱前后,航天员所受地球的万有引力提供航天员做圆周运动的向心力,航天员此时的加速度就是万有引力加速度即航天员出舱前后均处于完全失重状态,故B正确;
C、因为飞船在圆形轨道上的周期为90分钟小于同步卫星的周期,根据ω=可知角速度与周期成反比,所以飞船的周期小角速度大于同步卫星的角速度,故C错误;
D、飞船变轨前后通过椭圆轨道远地点时的加速度均为万有引力加速度,据可知,轨道半径一样则加速度一样,故D错误.
故选:B
2010年12月18日在西昌卫星发射中心发射了第七颗北斗导航卫星,为北斗系统实现2012年覆盖亚太地区、2020年覆盖全球的目标又近了一步.关于人造地球卫星,下列说法正确的是( )
正确答案
解析
解:根据万有引力提供向心力,有:=m
=mω2r=ma=
A、周期T=2π,卫星距地面越高,其运行的周期越大,故A正确;
B、线速度v=,卫星距地面越高,其运行的线速度越小,故B错误;
C、角速度ω=,卫星距地面越高,其运行的角速度越小,故C错误;
D、加速度a=,卫星距地面越高,其运行的加速度越小,故D错误;
故选:A.
地球的公转轨道接近圆,但彗星的运动轨道则是一个非常扁的椭圆.天文学家哈雷曾经在1662年跟踪过一颗彗星,他算出这颗彗星轨道的半长轴约等于地球公转半径的18倍,并预言这颗彗星将每隔一定时间就会再次出现.这颗彗星最近出现的时间是1986年,它下次飞近地球大约是哪一年( )
正确答案
解析
解:设彗星的周期为T1,地球的公转周期为T2,这颗彗星轨道的半长轴约等于地球公转半径的18倍,由开普勒第三定律得,
=
.所以1986+76=2062.故C正确,A、B、D错误.
故选C.
(1)在圆轨道上运动的质量为m的人造地球卫星,它到地面的距离等于地球半径R,地面上的重力加速度为g,则此时人造卫星的动能等于______;
(2)A、B两颗人造卫星绕地球做圆周运动,他们的圆轨道在同一平面内,周期分别是TA,TB,且TA>TB,从两颗卫星相距最近开始计时到两颗卫星相距最远至少经过的时间是______.
正确答案
解:(1)卫星绕地球做圆周运动,万有引力提供向心力,由牛顿第二定律得:G=m
,
在地球表面的物体:G=m′g,卫星的动能:EK=
mv2,
解得:EK=mgR;
(2)两颗卫星相距最近开始计时到两颗卫星相距最远转过的角度之差等于π,
则:t-
t=π,
解得:t=;
故答案为:(1)mgR;(2)
.
解析
解:(1)卫星绕地球做圆周运动,万有引力提供向心力,由牛顿第二定律得:G=m
,
在地球表面的物体:G=m′g,卫星的动能:EK=
mv2,
解得:EK=mgR;
(2)两颗卫星相距最近开始计时到两颗卫星相距最远转过的角度之差等于π,
则:t-
t=π,
解得:t=;
故答案为:(1)mgR;(2)
.
2012年6月16日下午6时37分神舟九号载人飞船搭载三名宇航员顺利升空,完成与天宫一号自动、手动对接等一系列任务后安全返回地面,这一科技成就标志我国航天技术取得新突破.已知飞船在绕地球飞行N圈,用时ts后进行变轨,由原来的椭圆轨道变为距地面高度为h的圆形轨道.地球半径R,表面处的重力加速度为g.
(1)用题中数据导出第一宇宙速度;
(2)飞船在上述圆轨道上运行的周期及角速度.
正确答案
解:(1)根据万有引力提供向心力得,…①
根据万有引力等于重力得,…②
由①②得,.
(2)根据万有引力提供向心力得,
解得.
则角速度ω=.
答:(1)第一宇宙速度的大小为;
(2)飞船在上述圆轨道上运行的周期,角速度为
.
解析
解:(1)根据万有引力提供向心力得,…①
根据万有引力等于重力得,…②
由①②得,.
(2)根据万有引力提供向心力得,
解得.
则角速度ω=.
答:(1)第一宇宙速度的大小为;
(2)飞船在上述圆轨道上运行的周期,角速度为
.
发射地球同步卫星时,先将卫星发射到近地圆轨道1,然后经点火使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3.轨道1与2相切于Q点,轨道2与3相切于P点,如图所示,则当卫星分别在1、2、3轨道上正常运行时,以下说法正确的是( )
正确答案
解析
解:A、人造卫星绕地球做匀速圆周运动,根据万有引力提供向心力,设卫星的质量为m、轨道半径为r、地球质量为M,有
解得:轨道3半径比轨道1半径大,卫星在轨道1上线速度较大,故A错误;
B、ω=轨道3半径比轨道1半径大,卫星在轨道3上角速度较小,故B正确;
C、从轨道Ⅰ到轨道Ⅱ,卫星在Q点是做逐渐远离圆心的运动,要实现这个运动必须使卫星所需向心力大于万有引力,所以应给卫星加速,增加所需的向心力.所以在轨道Ⅱ上Q点的速度大于轨道上ⅠQ点的速度.故C错误;
D、根据C选项的分析可知D正确.
故选:BD.
已知地球的自转周期和半径分别为T和R,地球同步卫星A的圆轨道半径为R1,卫星B沿半径为R2(R2<R1)的圆轨道在地球赤道的正上方运行,其运行方向与地球自转方向相同.求:
(1)卫星B做圆周运动的周期;
(2)卫星A和B连续地不能直接通讯的最长时间间隔(信号传输时间可忽略;涉及有关几何角度可用反三角值表示,如:sinθ=时,θ=arcsin
等).
正确答案
解:(1)由万有引力提供向心力有:
对于同步卫星有:
解得:T′=T
(2)由于地球的遮挡,使卫星A、B不能直接通讯,
如图所示,设遮挡的时间为t则有它们转过的角度之差为θ时就不能通讯,则有:
又根据几何关系可得:sinα=,sinβ=
,
而:θ=2(α+β)
由以上各式可解得:t=T
答:(1)卫星B做圆周运动的周期为T;
(2)卫星A、B连续地不能直接通讯的最长时间间隔为 T.
解析
解:(1)由万有引力提供向心力有:
对于同步卫星有:
解得:T′=T
(2)由于地球的遮挡,使卫星A、B不能直接通讯,
如图所示,设遮挡的时间为t则有它们转过的角度之差为θ时就不能通讯,则有:
又根据几何关系可得:sinα=,sinβ=
,
而:θ=2(α+β)
由以上各式可解得:t=T
答:(1)卫星B做圆周运动的周期为T;
(2)卫星A、B连续地不能直接通讯的最长时间间隔为 T.
如图所示,A、B是绕地球运行的“天宫一号”椭圆形轨道上的近地点和远地点,则关于“天宫一号”的说法正确的是( )
正确答案
解析
解:A、根据开普勒第二定律可知:卫星在近地点的速度大于远地点的速度,所以A点的线速度大于B点的线速度,故A正确;
B、根据G=mg,得 g=
,由于A到地心的距离比B到地心的距离小,所以在A点时重力加速度大,故B错误;
C、由G=ma,得 a=
,则知在B点时的加速度小,故C正确.
D、在B点卫星做近心运动,即万有引力大于需要的向心力,即重力大于需要的向心力,所以该处的重力加速度大于该处的向心加速度,故D错误
故选:AC
我国发射的低轨道卫星一和高轨道卫星二相比,它们绕地球做匀速圆周运动,下列说法中正确的是( )
正确答案
解析
解:根据万有引力提供圆周运动向心力有:知:
A、线速度v=,可知轨道半径大的卫星二速度小,故A错误,B正确;
C、周期T=,可知轨道半径大的卫星二周期大,故CD错误;
故选:B
两颗人造地球卫星A.B绕地球作圆周运动,周期之比为T1:T2=1:8,则A.B的轨道半径之比为______,运动速率之比为______,向心加速度之比为______.
正确答案
1:4
2:1
16:1
解析
解:人造卫星绕地球做圆周运动受到的万有引力提供向心力得,
=m
r=
周期之比为T1:T2=1:8,则A.B的轨道半径之比为1:4,
根据=m
v=,
A.B的轨道半径之比为1:4,所以运动速率之比为2:1,
根据=ma
a=
A.B的轨道半径之比为1:4,所以向心加速度之比为16:1.
故答案为:1:4,2:1,16:1
全球定位系统(GPS)由24颗卫星组成,它们在离地面2万多千米的高空上以12小时的周期环绕地球运行,与地球同步卫星相比较,下列说法正确的是( )
正确答案
解析
解:A、据知,同步卫星的周期大,角速度小,故A错误;
B、据知,周期大的同步卫星轨道半径大,而轨道半径大的向心加速度小,故同步卫星的向心加速度小,故B错误;
C、据知,周期大的同步卫星轨道半径大,故C正确;
D、由C知,据知,轨道半径大的同步卫星线速度小,故D错误.
故选:C.
我国已成功发射了探月卫星“嫦娥二号”,未来我国航天员可登月.若航天员在月球表面附近某处以初速度v0水平抛出一小物块,测得小物块下落高度为h时,水平距离为s.
(1)求月球表面的重力加速度g;
(2)设月球半径为R,万有引力常数为G,求月球的质量.
正确答案
解:(1)小物块在抛出后做平抛运动,则其
水平方向有:s=v0t…①
竖直方向有:…②
由①得平抛运动时间为:t=…③
将③代入②得月球表面的重力加速度为:
(2)设小物块的质量为m,根据万有引力与重力相等有:
得月球质量为:M==
答:(1)月球表面的重力加速度为;
(2)设月球半径为R,万有引力常数为G,求月球的质量为.
解析
解:(1)小物块在抛出后做平抛运动,则其
水平方向有:s=v0t…①
竖直方向有:…②
由①得平抛运动时间为:t=…③
将③代入②得月球表面的重力加速度为:
(2)设小物块的质量为m,根据万有引力与重力相等有:
得月球质量为:M==
答:(1)月球表面的重力加速度为;
(2)设月球半径为R,万有引力常数为G,求月球的质量为.
人造卫星离地面的距离等于地球的半径R,卫星的环绕速度为v,地面上重力加速度为g,则这三个量的关系是( )
正确答案
解析
解:人造卫星绕地球做匀速圆周运动,根据万有引力提供向心力,设卫星的质量为m、轨道半径为r、地球质量为M,有
F=F向F=G
F向=m
因而
G=m
解得
v= ①
地球表面重力加速度为
g= ②
根据题意
r=R+h=2R ③
由①②③式,可以求得:v=
故选C.
扫码查看完整答案与解析