- 平面直角坐标系
- 共160题
选做题(考生只能从中选做一题)
(1)(不等式选讲选做题)不等式2|x|+|x-1|<2的解集是______.
(2)(坐标系与参数方程选讲选做题)在直角坐标系中圆C的参数方程为(θ为参数),以原点O为极点,以x轴正半轴为极轴建立极坐标系,则圆C的圆心极坐标为______.
正确答案
(1)由不等式2|x|+|x-1|<2可得①,或②
,或③
.
解①可得-<x<0,解②得 0≤x<1,解③得 x∈∅.
再把①②③的解集取并集可得原不等式的解集为(-,1),
故答案为 (-,1).
(2)把圆C的参数方程为(θ为参数),消去参数,化为直角坐标方程为 x2+(y-2)2=4,表示以C(0,2)为圆心,以2为半径的圆.
故圆C的圆心极坐标为 (2,).
选修4-4:
坐标系与参数方程在平面直角坐标系x0y中,曲线C1为x=acosφ,y=sinφ(1<a<6,φ为参数).
在以0为原点,x轴正半轴为极轴的极坐标中,曲线C2的方程为ρ=6cosθ,射线ι为θ=α,ι与C1的交点为A,ι与C2除极点外的一个交点为B.当α=0时,|AB|=4.
(1)求C1,C2的直角坐标方程;
(2)若过点P(1,0)且斜率为的直线m与曲线C1交于D、E两点,求|PD|与|PE|差的绝对值.
正确答案
(1)由曲线C2的方程:ρ=6cosθ得 ρ2=6ρcosθ,所以C2的直角坐标方程是 x2+y2-6x=0.--(2分)
由已知得C1的直角坐标方程是+y2=1,
当a=0时射线l与曲线C1、C2交点的直角坐标为A(a,0)、B (6,0),-----(3分)
∵|AB|=4,∴a=2,∴C1的直角坐标方程是 +y2=1.①----(5分)
(2)m的参数方程为 (t为参数),②-------(7分)
将②带入①得13t2+4t-12=0,设D、E 点的参数分别是t1、t2,
则有 t1+t2=-,t1•t2=-
.-------(8分)
∴|PD|-|PE|=|t1+t2|=.------(10分)
A.(不等式选讲) 不等式|x-1|+|x+3|>a,对一切实数x都成立,则实数a的取值范围为______.
B.(几何证明选讲)如图,P是圆O外一点,过P引圆O的两条割线PAB、PCD,PA=AB=,CD=3,则PC=______.
C.(极坐标系与参数方程)极坐标方程ρsin2θ-2•cosθ=0表示的直角坐标方程是______.
正确答案
A.不等式|x-1|+|x+3|>a恒成立时,a小于左边的最小值
∵|x-1|+|x+3|≥|(x-1)-(x+3)|=4,
∴a<4,得实数a的取值范围为(-∞,4)
B.∵PAB、PCD是圆O的两条割线,
∴PA•PB=PC•PD,得PA(PA+AB)=PC(PC+CD)
代入题中数据,得(
+
)=PC(PC+3),解之得PC=2(舍-5)
C.极坐标方程ρsin2θ-2•cosθ=0两边都乘以ρ,得ρ2sin2θ-2•ρcosθ=0
∵ρsinθ=y,ρcosθ=x
∴原极坐标方程可化为:y2-2x=0,即y2=2x
故答案为:(-∞,4),2,y2=2x
选修4-2:矩阵与变换
在平面直角坐标系xoy中,求圆C的参数方程为(θ为参数,r>0),以O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+
)=2
,若直线l与圆C相切,求r的值.
正确答案
由ρcos(θ+)=2
,得ρ(
cosθ-
sinθ)=2
,
即ρcosθ-ρsinθ-4=0,即x-y-4=0,
所以直线的普通方程为x-y-4=0,
由,得
,①2+②2得,(x+1)2+y2=r2,
所以圆的普通方程为(x+1)2+y2=r2,
由题设知:圆心C(-1,0)到直线l的距离为r,即r==
,
即r的值为.
(坐标系与参数方程选做题)
若以直角坐标系的x轴的非负半轴为极轴,曲线l1的极坐标系方程为ρsin(θ-)=
(ρ>0,0≤θ≤2π),直线l2的参数方程为
(t为参数),则l1与l2的交点A的直角坐标是______.
正确答案
把曲线l1的极坐标系方程为ρsin(θ-)=
(ρ>0,0≤θ≤2π),化简可得 ρsinθcos
-ρcosθsin
=
,即 y=x+1.
由于直线l2的参数方程为(t为参数),消去参数化为普通方程为 x+y=3,
再由 ,可得
,故l1与l2的交点A的直角坐标是(1,2),
故答案为 (1,2).
扫码查看完整答案与解析