热门试卷

X 查看更多试卷
1
题型:填空题
|
填空题

(坐标系与参数方程选做题)已知直线l的参数方程为(参数t∈R),若圆C的极坐标方程为ρ=2cosθ,则圆心C到直线l的距离为______.

正确答案

直线l的普通方程为x+y-3=0,圆C的直角坐标方程为x2+y2-2x=0.

所以圆心C(1,0)到直线l的距离d==

故答案为:

1
题型:填空题
|
填空题

(坐标系与参数方程选做题)

曲线ρ=4cosθ关于直线θ=对称的曲线的极坐标方程为______.

正确答案

将原极坐标方程ρ=4cosθ,化为:

ρ2=4ρcosθ,

化成直角坐标方程为:x2+y2-4x=0,

它关于直线y=x(即θ=)对称的圆的方程是

x2+y2-4y=0,其极坐标方程为:ρ=4sinθ.

故答案为:ρ=4sinθ.

1
题型:填空题
|
填空题

已知圆的参数方程为(α为参数),直线l的极坐标方程为3ρcosθ+4ρsinθ+m=0,若圆与直线相切,则实数m=______.

正确答案

圆的参数方程为(α为参数),化为普通方程,即(x-1)2+y2=1.

直线3ρcosθ+4ρsinθ+m=0 即 3x+4y+m=0.

已知圆与直线相切,

∴圆心(1,0)到直线的距离等于半径.

=1,解得m=2或m=-8,

故答案为:2或-8.

1
题型:填空题
|
填空题

设极点与坐标原点重合,极轴与x轴正半轴重合,已知直线l的极坐标方程是:ρsin(θ-)=a,a∈R圆,C的参数方程是(θ为参数),若圆C关于直线l对称,则a=______.

正确答案

将两曲线方程化为直角坐标坐标方程,得直线l直角坐标方程为:x-y+2a=0,

C:(x-22+(y-2)2=4.

因为圆C关于直线l对称,所以,圆心在直线上,圆心的坐标适合直线的方程,

×2-2+2a=0,

解得a=-2.

故答案为:-2.

1
题型:填空题
|
填空题

分别为ρ=4cosθ和ρ=-8sinθ的两个圆的圆心距为______.

正确答案

将极坐标方程ρ=4cosθ和ρ=-8sinθ分别化为普通方程:

ρ=4cosθ⇒ρ2=4ρcosθ⇒x2+y2=4x⇒(x-2)2+y2=4,圆心(2,0);

ρ=-8sinθ⇒ρ2=-8ρsinθ⇒x2+y2=-8y⇒x2+(y+4)2=16,圆心(0,-4);

然后就可解得两个圆的圆心距为:d==2

故答案为:2

百度题库 > 高考 > 数学 > 平面直角坐标系

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题