- 平面直角坐标系
- 共160题
1
题型:填空题
|
已知直线l的参数方程为(t为参数),曲线C的参数方程为
(θ为参数).则直线l的倾斜角为______;设点Q是曲线C上的一个动点,则点Q到直线l的距离的最小值为______.
正确答案
由直线l的参数方程为(t为参数),得y=
x+1,则直线l的斜率为k=
,
设l的倾斜角为α,由0≤α<π,且tanα=,所以α=
;
由曲线C的参数方程为(θ为参数),则(x-2)2+y2=1.
所以曲线C为以(2,0)为圆心,以1为半径的圆,
则圆心C到直线l的距离为d==
,
所以曲线C上的一个动点Q到直线l的距离的最小值为-1=
.
故答案为,
.
1
题型:填空题
|
在平面直角坐标系中,点的坐标为
,点
的坐标为
,点
到直线
的距离为
,且
是直角三角形,则满足条件的点
有 个.
正确答案
8
略
1
题型:简答题
|
(本题满分12分)已知的极坐标方程为
,
分别为
在直角坐标系中与
轴、
轴的交点,曲线
的参数方程为
(
为参数,且
),
为
的中点,求:过
(
为坐标原点)的直线与曲线
所围成的封闭图
形的面积。
正确答案
面积为
曲线的直角坐标方程为
…2分 与
轴的交点为
…1分
曲线的普通方程为
;直线
…2分 直线
与曲线
的交点横坐标为
, …2分
则直线与曲线
所围成的封闭图形的
面积为 …5分
1
题型:填空题
|
把所给的极坐标方程ρ=-4cosθ+sinθ化成直角坐标方程为______.
正确答案
∵ρ=-4cosθ+sinθ,
∴ρ2=ρsinθ-4ρcosθ,
∴x2+y2=y-4x,
即x2+y2+4x-y=0.
故答案为:x2+y2+4x-y=0.
1
题型:填空题
|
过点A(a>0),且平行于极轴的直线l的极坐标方程是________.
正确答案
ρsin θ=a
略
已完结
扫码查看完整答案与解析