- 导数在研究函数中的应用
- 共24261题
已知函数f(x)=x3+ax2+bx+5,
(1)若曲线y=f(x)在x=1处的切线的方向向量为(-2,-6),且函数在x=时有极值,求f(x)的单调区间;
(2)在(1)的条件下,若函数y=f(x)在[-3,1]上与y=m2-2m+13有两个不同的交点,若g(x)=x2-2mx+1在区间[1,2]上的最小值,求实数m的值。
正确答案
解:(1)∵f(x)=x3+ax2+bx+5,
∴f′(x)=3x2+2ax+b,
由已知f(x)在x=1处的切线斜率为=3,
∴,
∴a=2,b=-4,
∴f(x)=x3+2x2-4x+5,f′(x)=3x2+4x-4,
令f′(x)>0得x<-2 或x>,
令f′(x)<0得-2<x<,
∴f(x)在(-∞,-2),(,+∞)上分别是增函数,f(x)在(-2,
)上是减函数。
(2)由(1)可知,y=f(x)在x=-2时取得极大值,f(-2)=13,且f(-3)=8,f(-1)=4,
∴,
又g(x)=x2-2mx+1=(x-m)2+1-m2,
当0<m<1时,g(x)在[1,2]上的最小值为g(1)=2-2m=-,∴m=
,与0<m<1矛盾;
②当1≤m<2时,g(x)在[1,2]最小值为g(m)=1-m2=-,
∴m=或m=-
(舍去);
综上可知,m=。
已知f(x)=x2+bx+c为偶函数,曲线y=f(x)过点(2,5),g(x)=(x+a)f(x).
(1)求曲线y=g(x)有斜率为0的切线,求实数a的取值范围;
(2)若当x=-1时函数y=g(x)取得极值,确定y=g(x)的单调区间.
正确答案
(1)∵f(x)=x2+bx+c为偶函数,故f(-x)=f(x)即有
(-x)2+b(-x)+c=x2+bx+c解得b=0
又曲线y=f(x)过点(2,5),得22+c=5,有c=1
∵g(x)=(x+a)f(x)=x3+ax2+x+a从而g′(x)=3x2+2ax+1,
∵曲线y=g(x)有斜率为0的切线,故有g′(x)=0有实数解.即3x2+2ax+1=0有实数解.
此时有△=4a2-12≥0解得
a∈(-∞,-]∪[
,+∞)所以实数a的取值范围:a∈(-∞,-
]∪[
,+∞);
(2)因x=-1时函数y=g(x)取得极值,故有g′(-1)=0即3-2a+1=0,解得a=2
又g′(x)=3x2+4x+1=(3x+1)(x+1)令g′(x)=0,得x1=-1,x2=-
当x∈(-∞,-1)时,g′(x)>0,故g(x)在(-∞,-1)上为增函数
当x∈(-1,-)时,g′(x)<0,故g(x)在(-1,-
)上为减函数
当x∈(-,+∝)时,g′(x)>0,故g(x)在( -
,+∝)上为增函数.
已知函数f(x)=ax2-(a+1)x+lnx.
(I)当a=2时,求曲线y=f(x)在点(2,f(2))处切线的斜率;
(II)当a>0时,求函数f(x)的单调区间.
正确答案
(1)当a=2时,f(x)=ax2-(a+1)x+lnx,
f′(x)=2x2-3+,故f′(2)=
.
所以曲线y=f(x)在点(2,f(2))处的切线的斜率为.
(2)f′(x)=ax2-(a+1)+.
令f′(x)=0,解得x=1,或x=.
因为a>0,x>0.
①当0<a<1时,
若x∈(0,1)时,f′(x)>0,函数f(x)单调递增;
若x∈(1,)时,f′(x)0,<函数f(x)单调递减;
若x∈(,+∞)时,f′(x)>0,函数f(x)单调递增;
②当a=1时,
若x∈(0,+∞)时,f′(x)>0,函数f(x)单调递增;
③当a>1时,
若x∈(0,)时,f′(x)>0,函数f(x)单调递增;
若x∈(,1)时,f′(x)0,<函数f(x)单调递减;
若x∈(1,+∞)时,f′(x)>0,函数f(x)单调递增.
设a∈[-2,0],已知函数f(x)=
(Ⅰ) 证明f(x)在区间(-1,1)内单调递减,在区间(1,+∞)内单调递增;
(Ⅱ) 设曲线y=f(x)在点Pi(xi,f(xi))(i=1,2,3)处的切线相互平行,且x1x2x3≠0,证明x1+x2+x3>.
正确答案
(I)令f1(x)=x3-(a+5)x(x≤0),f2(x)=x3-x2+ax(x>0).
①(x)=3x2-(a+5),由于a∈[-2,0],从而当-1<x<0时,
(x)=3x2-(a+5)<3-a-5≤0,
所以函数f1(x)在区间(-1,0)内单调递减,
②(x)=3x2-(a+3)x+a=(3x-a)(x-1),由于a∈[-2,0],所以0<x<1时,
(x)<0;
当x>1时,(x)>0,即函数f2(x)在区间(0,1)内单调递减,在区间(1,∞)上单调递增.
综合①②及f1(0)=f2(0),可知:f(x)在区间(-1,1)内单调递减,在区间(1,+∞)内单调递增;
(II)证明:由(I)可知:f′(x)在区间(-∞,0)内单调递减,在区间(0,)内单调递减,在区间(
,+∞)内单调递增.
因为曲线y=f(x)在点Pi(xi,f(xi))(i=1,2,3)处的切线相互平行,从而x1,x2,x3互不相等,且f′(x1)=f′(x2)=f′(x3).
不妨x1<0<x2<x3,由3-(a+5)=3
-(a+3)x2=3
-(a+3)x3+a.
可得3-3
-(a+3)(x2-x3)=0,解得x2+x3=
,从而0<x2<
<x3.
设g(x)=3x2-(a+3)x+a,则g()<g(x2)<g(0)=a.
由3-(a+5)=g(x2)<a,解得-
<x1<0,
所以x1+x2+x3>-+
,
设t=,则a=
,
∵a∈[-2,0],∴t∈[,
],
故x1+x2+x3>-t+=
(t-1)2-
≥-
,
故x1+x2+x3>-.
已知函数f(x)=(x2+ax-2a2+3a)ex(x∈R),其中a∈R。
(1)当a=0时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;
(2)当时,求函数f(x)的单调区间与极值。
正确答案
解:(1)当a=0时,
故f'(1)=3e
所以曲线y=f(x)在点(1,f(1))处的切线的斜率为3e;
(2)
令f'(x)=0,解得x=-2a或x=a-2
由知,-2a≠a-2
以下分两种情况讨论:
(i)若,则-2a<a-2,当x变化时,f'(x)、f(x)的变化情况如下表:
所以f(x)在(-∞,-2a),(a-2,+∞)内是增函数,
在(-2a,a-2)内是减函数
函数f(x)在x=-2a处取得极大值f(-2a),且f(-2a)=3ae-2a,
函数f(x)在x=a-2处取得极小值f(a-2),且f(a-2)=(4-3a)ea-2(ii)若,则-2a>a-2,当x变化时,f'(x)、f(x)的变化情况如下表:
所以f(x)在(-∞,a-2),(-2a,+∞)内是增函数,在(a-2,-2a)内是减函数
函数f(x)在x=a-2处取得极大值f(a-2),且f(a-2)= (4-3a)ea-2函数f(x)在x=-2a处取得极小值f(-2a),且f(-2a)= 3ae-2a。
已知函数f(x)=.
(1)求函数f(x)的单调区间;
(2)求函数f(x)图象在与y轴交点处的切线与两坐标轴所围成的图形面积.
正确答案
(1)函数的定义域为{x|x≠2}, f′(x)=
当x>3时,f'(x)>0,
当x<3且x≠2时,f'(x)<0.
故函数f(x)的增区间为(3,+∞),减区间为(-∞,-2),(2,3).
(2)函数f(x)的图象与y轴交点坐标为(0, -),∴f′(0)=
故切线方程为y+=-
x,
切线与两坐标轴的交点分别为(0, -)和(-
, 0)
∴所求图象的面积S=×
×
=
.
已知函数f(x)=ax3+bx2的图象经过点M(1,4),曲线在点M处的切线恰好与直线x+9y=0垂直.
(1)求实数a,b的值;
(2)若函数f(x)在区间[m,m+1]上单调递增,求m的取值范围.
正确答案
(1)∵f(x)=ax3+bx2的图象经过点M(1,4),∴a+b=4①式 …(1分)
f'(x)=3ax2+2bx,则f'(1)=3a+2b…(3分)
由条件f′(1)•(-)=-1,即3a+2b=9②式…(5分)
由①②式解得a=1,b=3
(2)f(x)=x3+3x2,f'(x)=3x2+6x,
令f'(x)=3x2+6x≥0得x≥0或x≤-2,…(8分)
∵函数f(x)在区间[m,m+1]上单调递增
∴[m,m+1]⊆(-∝,-2]∪[0,+∝)
∴m≥0或m+1≤-2
∴m≥0或m≤-3
已知函数f(x) = (k为常数,e=2.71828……是自然对数的底数),曲线y= f(x)在点(1,f(1))处的切线与x轴平行。
(Ⅰ)求k的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)设g(x)=(x2+x),其中
为f(x)的导函数,证明:对任意x>0,
。
正确答案
解:由f(x) = 可得
,
而,即
,解得
;
(Ⅱ),
令可得
,当
时,
;
当时,
。
于是在区间
内为增函数;在
内为减函数。
(Ⅲ),
当时,
,
当时,要证
。
只需证,然后构造函数即可证明。
已知函数f(x)=x-1-alnx(a∈R),
(1)若曲线y=f(x)在x=1处的切线的方程为3x-y-3=0,求实数a的值;
(2)求证:f(x)≥0恒成立的充要条件是a=1;
(3)若a<0,且对任意x1,x2∈(0,1],都有|f(x1)-f(x2)|≤4,求实数a的取值范围。
正确答案
解:(1)因为,所以f′(1)=1-a,
所以曲线y=f(x)在x=1处切线的斜率为1-a,
因为曲线y=f(x)在x=1处的切线为3x-y-3=0,
所以1-a=3,解得a=-2;
(2)①充分性,当a=1时,,
所以当x>1时,f′(x)>0,所以函数f(x)在(1,+∞)上是增函数;
当0<x<1时,f′(x)<0,所以函数f(x)在(0,1)上是减函数,
所以f(x)≥f(1)=0;
②必要性:,其中x>0,
(ⅰ)当a≤0时,因为f′(x)>0恒成立,所以函数f(x)在(0,+∞)上是增函数;
而f(1)=0,所以当x∈(0,1)时,f(x)<0,与f(x)≥0恒成立相矛盾,所以a≤0不满足题意;
(ⅱ)当a>0时,因为当x>a时,f′(x)>0,所以函数f(x)在(a,+∞)上是增函数;
当0<x<a时,f′(x)<0,所以函数f(x)在(0,a)上是减函数,
所以f(x)≥f(a)=a-1-alna,
因为f(1)=0,所以当a≠1时,f(a)<f(1)=0,此时与f(x)≥0恒成立相矛盾,
所以a=1;
综上所述f(x)≥0恒成立的充要条件是a=1;
(3)由(2)可知,当a<0时,函数f(x)在(0,1]上是增函数,
又函数在(0,1]上是减函数,
不妨设,
则,
所以等价于
,
即,
设,
则等价于函数h(x)在区间(0,1]上是减函数,
因为,
所以在x∈(0,1]上恒成立,
即在x∈(0,1]上恒成立,即a不小于
在区间(0,1]内的最大值,
而函数在区间(0,1]上是增函数,
所以的最大值为-3,
所以a≥-3,
又a<0,所以a∈[-3,0)。
函数y=cosx的图象在点(,
)处的切线斜率为______.
正确答案
y=cosx的导数为y=-sinx,将点的坐标(,
)代入,则可得斜率为:-
,
故答案为:-
扫码查看完整答案与解析