- 带电粒子在电场中的运动
- 共5409题
如图所示的平行板电容器板间距离d=1m,两板间的电压随时间变化图线如图(b),t =0时刻,有一荷质比为2×1010 C/Kg粒子以平行于极板的速度v0=2×105m/s射入电容器,开始向下偏转,t=3×10-5s时刻刚好从极板右侧面射出电场,带电粒子的重力不计。
求:(1) 平行板电容器的板长;
(2)定性画出粒子的运动轨迹图;
(3)粒子射出电容器时偏转的角度(用反函数表示)
正确答案
(1)6m (2)答案见下图 (3)
试题分析:(1) 粒子在平行板电容器板间做类平抛运动,水平方向为匀速直线运动
L= V0t=2×1053×10-5m=6m
(2) 如右图,水平等分1分,曲面向下1分,竖直等分1分.
(3)射出时竖直速度
由速度的分解得到:
所以:
点评:本题学生明确粒子在平行板电容器板间运动的轨迹,在画轨迹图时注意在水平方向和竖直方向时间与位移的对称性,第三问不熟练的学生应画出速度分解的示意图去分析。
如图所示,电路A、B两点分别接恒压电源的正、负极,滑动变阻器R的最大阻值为3R0,ab=bc=cd,伏特表的内阻Rv 的阻值为2R0,水平放置的平行金属板长为L、极板间距为d,且d=,极板间电场均匀分布.现有一个质量为m、电量大小为q的粒子以大小为
的初速度从下极板边缘飞入匀强电场,当滑片p处于a点时,粒子恰好从上极板边缘水平飞出,粒子重力不计.求
(1)粒子的带电性质及与水平极板间的夹角θ;
(2)恒压电源的电压U;
(3)若保持大小不变但改变
方向,使得带点粒子恰能沿极板中央轴线水平飞出,这时伏特表的读数多大?滑片p 应处于哪个位置?
正确答案
(1)正电θ=45o(2)(3)Rx≈2.7Ro
(1)粒子带正电 (2分)
分运动时间相等 (2分)
θ="45o" (1分)
(2) (2分)
y=d, 电压 (1分)
(3)y=,由分运动时间相等
得tg
=
(1分)
, 相应的伏特表读数
(2分)
由分压关系知滑片P应处于ab之间(1分),滑动变阻器滑片P以下部分电阻为Rx≈2.7Ro (1分)
如图所示的电路中,两平行金属板A、B水平放置在竖直平面内,两板间的距离d=40cm.板长为L=1.6m。电源电动势E=24V,内电阻r=1Ω,电阻R=5.3Ω.开关S处于断开状态。此时, 一质量为m=4×10-2kg、带电量q=1×10-2C的带负电小球沿两板中心线以某一速度水平射入, 该小球射到B板距左端为d的C处.
(1)求小球射入两板时的速度;
(2)调节滑动变阻器滑片,问当闭合开关S后,滑动变阻器接入电路的阻值为多大时,可使同样射入的小球能从A、B板间飞出(不考虑空气阻力,取g=10m/s2)
正确答案
(1)(2)
试题分析:(1)粒子在水平方向做匀速直线运动,在竖直方向做匀加速直线运动,所以有:,
,联立解得
(2)粒子飞出时,水平方向上有,竖直方向上有:
如果是在上板飞出:,解得
如果是在下板飞出:,解得
故时,小球能从AB板间飞出
(10分)如图所示,两块长3cm的平行金属板AB相距1cm,并与300V直流电源的两极相连接,,如果在两板正中间有一电子(m=9×10-31kg,e=1.6×10-19C),沿着垂直于电场线方向以2×107m/s的速度飞入,则:(1)电子能否飞离平行金属板?
(2)如果在A到B之间的区域分布宽1cm的电子带通过此电场,能飞离电场的电子数占总数的百分之几?
正确答案
(1)粒子不能飞出电场。(2)40﹪。
分析和解答:(1)当电子从正中间沿着垂直于电场线方向以2×107m/s的速度飞入时,若能飞出电场,则电子在电场中的运动时间为,在沿AB方向上,电子受电场力的作用,在AB方向上的位移为
,其中
,联立求解,得y=0.6cm,而
cm,所以
,故粒子不能飞出电场。
(2)从(1)的求解可知,与B板相距为y的电子带是不能飞出电场的,而能飞出电场的电子带宽度为cm,所以能飞出电场的电子数占总电子数的百分比为:
﹪=
﹪=40﹪。
本题考查带电粒子在电场中的偏转,如果粒子能够飞出电场,水平方向做的是匀速运动,由此可求得运动时间,在竖直方向粒子做匀加速直线运动,由位移与时间的关系可求得竖直位移大小,与两极板间距进行对比,如果大于两极板距离的一半说明不能飞出电场,反之能飞出电场
如图所示,一束电子流在U1=500V的电压加速后垂直于平行板间的匀强电场飞人两板问的中央。若平行板问的距离d=1cm,板长ι=5cm,求:
小题1:电子进入平行板间的速度多大?
小题2:至少在平行板上加多大电压U2才能使电子不再飞出平行板?(电子电量e=1.6×10-19C,电子的质量m=9×10-31kg)
正确答案
小题1:
小题2:40V
如图所示,电子以v0沿与电场垂直方向从A点飞进匀强电场,并从另一端B沿与场强方向成150°角飞出,则A、B两点电势差是___。(设电子电荷量为e、质量为m)
正确答案
(16分)如图,水平放置的平行板电容器,原来两极板不带电,上极板接地,它的极板长L=0.1 m,两极板间距离d=0.4 cm.有一束相同微粒组成的带电粒子流从两板中央平行于极板射入,由于重力作用微粒落到下板上.已知微粒质量为m=2×10-6 kg,电荷量为q=+1×10-8 C,电容器电容为C=10-6 F,g 取10 m/s2,求:
(1)为使第一个微粒的落点范围在下极板中点到紧靠边缘的B点之内,则微粒入射速度v0应为多少?
(2)若带电粒子落到AB板上后电荷全部转移到极板上,则以上述速度射入的带电粒子最多能有多少个落到下极板上?
正确答案
(1) 2.5 m/s
(1)若第一个粒子落到O点,
由=v01t1 ---------2分
=
得v01=2.5 m/s ---------2分
若落到B点,由L=v02t1 -------2分
=
得v02=5 m/s
故 2.5 m/s
(2)由L=v01t,得t=4×10-2 s--------2分
由=
at2得a=2.5 m/s2-------------2分
由mg -qE=ma,E= ----------2分
得Q=6×10-6C
所以n==600个.----------2分
本题带电粒子在匀强电场中的偏转,如果粒子落在O点,由粒子所受电场力方向与速度方向垂直可知粒子做的是类平抛运动,由平抛运动规律可求得此时速度大小,如果粒子落在B点,由水平和竖直方向的分运动可求得此时速度大小,由此可知粒子初速度的取值范围,随着落在下极板的电荷越来越多,极板间的场强越来越大,由水平分速度先求的运动时间,再由竖直方向的匀加速直线运动求得加速度大小,由牛顿第二定律求得电场力大小,由E=U/d可求得电压大小,由电容器的电容公式可求得极板带电量,从而求得粒子个数
(12分)如图所示,AB、CD两金属板间形成一匀强电场(板的边缘电场不考虑),板长为L,电场强度为E。一质量为m,电荷量为+q的粒子(不计重力)沿两板的中间线OO′从AC中点O处以初速度v0射入匀强电场,粒子恰好能从极板边缘上的D点射出匀强电场。求:
(1)小球在匀强电场中的运动时间;
(2)两板间距离d;
(3)若要使粒子打在CD板的正中央P点,现调节粒子的入射速度大小变为v′,方向不变, v′与v0的比值为多少?
正确答案
(1)(2)
(3)
试题分析:(1)粒子在OO′方向做匀速直线运动
(2分) ,故解得:
(1分)
(2)沿电场方向做类平抛运动,所以有: (2分)
(2分)
联立解得 (1分)
(3)粒子在电场方向的运动运动相同,故改变初速度后的与改变初速度前两粒子的运动间
相同(1分)
以v′速度入射时, (1分)
(1分)
两式相比得 (1分)
英国物理学家汤姆孙(J.Jthomson,1856-1940)认为阴极射线是带电粒子流。如图是他当时使用的放电管的示意图。从阴极K发出的带电粒子通过小孔A、A’形成一条细细的射线。
(1)当M N之间未加电场时,射线不偏转射中P1按图示方向施加电场E之后,射线发生偏转并击中荧光屏P2点。由此你推断阴极射线带有什么性质的电荷?
(2)为了 抵消阴极射线的偏转,是它从P2点回到P1,此时,在M和N间的区域,再加上一个方向垂直于纸面的匀强磁场.这个磁场方向指向纸里还是指向纸外?
(3)调节磁场的强弱,当磁感应强度的大小为B时,亮点重新回到P1点.求打在荧光屏P1点的阴极射线粒子速度V的大小。
(4)去掉电场E只保留磁场B。由于磁场方向与射线运动方向垂直,阴极射线在M和N之间有磁场的区域形成半径r的圆弧,使得射线落在P3点。试推导出电子的比荷q/m的表达式
正确答案
(1) 负电 (2) 垂直纸面向外(3) v="E/B" (4) q/m =v/Br
试题分析:(1)负电 ---2分
(2)垂直纸面向外 ---2分
(3)Bqv=Eq ---2分 v=E/B ----2分
(4)Bqv=mv2/r ---2分 q/m =v/Br ---2分
点评:电粒子在垂直的电场中做类平抛运动,在垂直的磁场中做匀速圆周运动.类平抛运动可用平抛运动规律来处理,圆周运动的可建立几何关系来列式求解.
如图所示,电路中电源内阻不计,水平放置的平行金属板A、B间的距离为d,金属板长为L.在两金属板左端正中间位置M,有一个小液滴以初速度v0水平向右射入两板间,已知小液滴的质量为m,小液滴带负电,电荷量为q.要使液滴从B板右侧上边缘射出电场,电动势E是多大?重力加速度用g表示.
正确答案
试题分析:由闭合电路欧姆定律得 ①
两金属板间电压为
UAB=IR= ②
由牛顿第二定律得
q-mg=ma ③
液滴在电场中做类平抛运动
L=v0t ④
⑤
由以上各式解得 ⑥
扫码查看完整答案与解析