热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 10 分


22.如图,在直角中,边上异于的一点,以为直径作,分别交于点


(Ⅰ)证明:四点共圆;
(Ⅱ)若中点,且,求的长.

正确答案

 (Ⅰ)略      

 (Ⅱ)

解析

试题分析:本题是有关直线与圆的问题,难度不大。在解题中注意结合切线的性质和勾股定理等知识进行解决。

(Ⅰ)连结,则

因为为直径,所以

因为,所以

所以

所以四点共圆.

(Ⅱ)由已知的切线,所以,故

所以

因为中点,所以

因为四点共圆,所以

所以

考查方向

本题主要考查圆的基本性质、圆周角定理、四点共圆等基础知识,考查推理论证能力.难度较小.

解题思路

本题主要考查圆的基本性质、圆周角定理等基础知识。

解题步骤如下:利用四点共圆的判定定理,证明四点共圆;利用切线性质和勾股定理及第一问的结论,求出的长。

易错点

第二问计算中,不易想到利用第一问四点共圆的性质解决。

知识点

圆的切线的判定定理的证明圆的切线的性质定理的证明与圆有关的比例线段
1
题型:简答题
|
简答题 · 10 分

22.选修4-1:几何证明选讲

如图,已知:是以为直径的半圆上一点,于点,直线与过的切线相交于点[来中点,连接于点

(Ⅰ)求证:∠BCF=∠CAB

(Ⅱ)若FB=FE=1,求⊙O的半径.

正确答案

(1)略

(2)

解析

(Ⅰ)证明:因为AB是直径,

所以∠ACB=90°

又因为F是BD中点,所以∠BCF=∠CBF=90°-∠CBA=∠CAB

因此∠BCF=∠CAB

(Ⅱ)解:直线CF交直线AB于点G,

由FC=FB=FE得:∠FCE=∠FEC

可证得:全等,所以 FA=FG,

且AB=BG

由切割线定理得:(1+FG)2=BG×AG=2BG2      ……①

在Rt△BGF中,由勾股定理得:BG2=FG2-BF……②

由①、②得:FG2-2FG-3=0

解之得:FG1=3,FG2=-1(舍去)

所以AB=BG=

所以⊙O半径为.

考查方向

本题主要考查圆中的圆周角、圆心角定理、弦切角定理,以及切割线定理的运用,难度中等,属选考题中的热点问题。

解题思路

第一问:由已知条件得FC=FB=FE得到∠BCF=∠CBF=∠CAB

第二问:由FC=FB=FE得:∠FCE=∠FEC,继而证得:全等,得到FA=FG,由切割线定理得:(1+FG)2=BG×AG=2BG再由勾再由股定理得:BG2=FG2-BF2,,然后求出FG

易错点

1、第一问想到弦切角定理,进而向证明CF与圆相切,虽然可以证明,但是,但是过程稍烦一些。          2、第二问没有注意题中的已知条件,而运用导致无法计算

知识点

圆的切线的判定定理的证明圆的切线的性质定理的证明与圆有关的比例线段
1
题型:填空题
|
填空题 · 5 分

11. 如下图,是圆的切线,切点为交圆两点,

          

正确答案

解析

所以

,所以

求得,

由勾股定理可得,

所以

所以

考查方向

切线长定理 弦切角定理 勾股定理

解题思路

根据切线长定理,勾股定理求解

易错点

圆中线段关系弄错

知识点

圆的切线的性质定理的证明与圆有关的比例线段
1
题型:简答题
|
简答题 · 10 分

22. 如图,是圆外一点,是圆的切线,为切点,割线与圆交于中点,的延长线交圆于点,证明:

(Ⅰ);(Ⅱ).

23. 在直角坐标系中,曲线的参数方程为,(为参数),直线的参数方程为,(为参数).以原点为极点,轴的正半轴为极轴建立极坐标系,点的极坐标为.

(Ⅰ)求点的直角坐标,并求曲线的普通方程;(Ⅱ)设直线与曲线的两个交点为,求的值.

24. 已知函数

(Ⅰ)若,解不等式:;(Ⅱ)若恒成立,求的取值范围.

正确答案

22.略  

23. (Ⅰ)(Ⅱ)6  

24. (Ⅰ)(Ⅱ)

解析

22. (Ⅰ)证明:连接,由题设知,故

因为:

由弦切角等于同弦所对的圆周角:

所以:,从而弧,因此: 

(Ⅱ)由切割线定理得:

因为

所以:

由相交弦定理得:

所以: 

 23. (Ⅰ)由极值互化公式知:点的横坐标,点的纵坐标所以

消去参数的曲线的普通方程为: 

(Ⅱ)点在直线上,

将直线的参数方程代入曲线的普通方程得:

设其两个根为

所以:

由参数的几何意义知: 

 24. (Ⅰ)当时,

解得:

所以原不等式解集为

(Ⅱ),若恒成立,

只需:

解得:   

考查方向

22.几何证明的相关知识  

23. 参数方程和极坐标第 

24. 本题考查了绝对值不等式的运用

解题思路

22.运用同圆中同弧或等弧所对的角相等,第二题中运用相交弦定理和切割线定理解决,注意进行线段关系的转化。

23. 按步骤解题 

24.无

易错点

22.1.解题不规范 2.出边和角的关系。 

23. 基础知识不扎实倒致错误。

24. 绝对值不等式不会运用

知识点

圆的切线的性质定理的证明与圆有关的比例线段
1
题型:简答题
|
简答题 · 10 分

22.几何证明选讲

如图,的切线,过圆心的直径,相交于两点,连结.

(1) 求证:

(2) 求证:.

正确答案

答案已在路上飞奔,马上就到!

解析

(1)由是圆的切线,因此弦切角的大小等于夹弧所对的圆周角,在等腰中,,可得,所以.

(2)由相似可知,,由切割线定理可知,,则,又,可得.

考查方向

本题综合考查了圆的性质、弦切角定理、等边三角形的性质、三角形全等、三角形的外接圆的半径等知识,需要较强的推理能力、分析问题和解决问题的能力了与圆有关的比例线段

解题思路

(1)利用圆的切线的性质,结合等腰三角形的性质,即可证明∠PAD=∠CDE;

(2)利用△PBD∽△PEC,结合切割线定理即可证明结论.

易错点

圆的切线的性质不会灵活应用

知识点

圆的切线的性质定理的证明与圆有关的比例线段
百度题库 > 高考 > 文科数学 > 与圆有关的比例线段

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题