- 圆的参数方程
- 共13题
(坐标系与参数方程选做题)在平面直角坐标系中,直线为参数与
圆为参数相切,切点在第一象限,则实数的值为 .
正确答案
解析
略
知识点
已知动点P,Q都在曲线C:(t为参数)上,对应参数分别为t=α与t=2α(0<α<2π),M为PQ的中点。
(1)求M的轨迹的参数方程;
(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点。
正确答案
(1) (α为参数,0<α<2π); (2)略
解析
(1)依题意有P(2cos α,2sin α),Q(2cos 2α,2sin 2α),
因此M(cos α+cos 2α,sin α+sin 2α)。
M的轨迹的参数方程为(α为参数,0<α<2π)。
(2)M点到坐标原点的距离
d=(0<α<2π)。
当α=π时,d=0,故M的轨迹过坐标原点。
知识点
在平面直角坐标系xoy中,直线l的参数方程是(参数tR),圆C的参数方程是(参数θR),则圆C的圆心到直线l的距离为____________。
正确答案
2
解析
略
知识点
已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.
(1)把C1的参数方程化为极坐标方程;
(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)。
正确答案
(1)ρ2-8ρcos θ-10ρsin θ+16=0.
(2),
解析
(1)将消去参数t,化为普通方程(x-4)2+(y-5)2=25,
即C1:x2+y2-8x-10y+16=0.
将代入x2+y2-8x-10y+16=0得ρ2-8ρcos θ-10ρsin θ+16=0.
所以C1的极坐标方程为
ρ2-8ρcos θ-10ρsin θ+16=0.
(2)C2的普通方程为x2+y2-2y=0.
由
解得或
所以C1与C2交点的极坐标分别为,.
知识点
已知动点P,Q都在曲线C:(t为参数)上,对应参数分别为t=α与t=2α(0<α<2π),M为PQ的中点。
(1)求M的轨迹的参数方程;
(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点。
正确答案
见解析
解析
(1)依题意有P(2cos α,2sin α),Q(2cos 2α,2sin 2α),
因此M(cos α+cos 2α,sin α+sin 2α)。
M的轨迹的参数方程为(α为参数,0<α<2π)。
(2)M点到坐标原点的距离
d=(0<α<2π)。
当α=π时,d=0,故M的轨迹过坐标原点。
知识点
扫码查看完整答案与解析