- 动量守恒定律
- 共299题
【物理——选修3—5】(15分)
22.(5分)下列说法中正确的是__________.(填正确答案标号.全部选对得5分,选对但不全得3分,有选错的得0分)
23.(10分)两相同平板小车A、B放在光滑水平面上,两小车质量均为2kg,车长0.3m,A车左端放一小铁块C,质量为1kg,铁块与小车表面的摩擦因数均为0.4,开始A、C一起以v0=4m/s滑向静止的B车,A、B碰撞后粘在一起,求:
①B车运动的最大速度;
②通过计算说明,C停在A车还是B车上?
正确答案
解析
A.只有入射光的频率大于金属的极限频率,才能产生光电效应,当入射频率越高时,则光电子的最大初动能越大,与入射光的强度无关,故A错误;
B.放射性元素衰变的快慢,即半衰期只由核内部自身的因素决定,与其物理状态、化学状态无关,故B正确;
C.原子核内部某个中子转变为质子时,放出β射线,故C错误;
D.比结合能越大表示该原子核越稳定,故D正确;
考查方向
光电效应;原子核衰变及半衰期、衰变速度;X射线、α射线、β射线、γ射线及其特性
解题思路
当入射光的频率大于金属的极限频率,就会发生光电效应;半衰期只由核内部自身的因素决定;中子转变为质子时,放出β射线;
易错点
掌握β射线的实质,理解α、β、γ这三种射线特性.
正确答案
2.4m/s; B车上
解析
①ABC组成的系统水平方向不受外力,系统动量守恒,当三者速度相等时,B车速度最大,以向右为正,根据动量守恒定律得:(M+m)v0=(2M+m)v
解得:v=2.4m/s
②A与B碰撞后,AB车的共同速度为v1,根据动量守恒定律则有:Mv0=2Mv1,C在车上滑过得距离为s,根据能量守恒定律得:
解得:s=0.4m,故C滑块相对静止在B车上.
考查方向
动量守恒定律
解题思路
①ABC组成的系统水平方向不受外力,系统动量守恒,当三者速度相等时,B车速度最大,根据动量守恒定律列式求解;
②A与B碰撞过程中,根据动量守恒定律求出共同速度,再根据能量守恒定律求出C滑行的距离,从而判断C停在哪个小车上.
易错点
正确分析物体的受力情况和运动情况,明确当三者速度相等时,B车速度最大,注意应用动量守恒定律解题时要规定正方向.
【选修3-5】
【物理—选修3-5】23.(5分)以下是有关近代物理内容的若干叙述,其中正确的是___________。(填正确答案标号,全部选对得5分,部分选对得2分,错选得0分)
A一束光照射到某种金属上不能发生光电效应,改用波长较长的光照射该金属可能
B氡222的半衰期为3.8天,则质量为4g的氡222经过7.6天还剩下1 g的氡222
C玻尔理论解释了氢原子发射出来的光子其谱线为什么是不连续的。
D重核裂变为几个中等质量的核,其平均核子质量会增加。
【物理—选修3-5】24.(10分)如图所示,长L=1m的小车静止在光滑的水平面上,一滑块以v0=3m/s的水平速度从小车左端滑入并从小车右端滑出,小车和滑块的质量均为1 kg,己知滑块与小车间的动摩擦因数。g=10m/s2,
求:(I)滑块离开小车时,滑块和小车的速度大小;(II)此过程,小车受到合外力的冲量。
正确答案
BC
解析
A、改用波长较长的光照射,则其频率更小,根据光电效应条件,更不会发生光电效应现象,故A错误;
B、氡的半衰期为3.8天,质量为4g的氡,经7.6天后,有3g衰变成新核,还剩下1g没衰变,故B正确;
考查方向
原子核衰变及半衰期、衰变速度;重核的裂变
解题思路
发生光电效应的条件是入射光的频率大于金属的极限频率;半衰期为一半的原子发生衰变所用的时间,根据这个关系可判断有多少氡发生衰变和能剩下多少氡;玻尔理论能解释不连续谱线;根据质量亏损,结合质能方程,可知,发生核反应,平均核子质量会减小.
易错点
掌握玻尔理论的量子化观点,及无论是重核裂变还是轻核聚变,由于释放能量,会导致平均核子质量减小.
正确答案
①v1=2m/s v2=1m/s
②I=1Ns,方向水平向右
解析
①取水平向右为正方向,设滑离时,滑块和小车的速度分别为v1,v2,对全程,由动量守恒定律有:
mv0=mv1+mv2
依能量守恒定律有:
考查方向
动量守恒定律; 能量守恒定律
解题思路
①取水平向右为正方向,对滑块滑离小车的过程,根据动量守恒定律及能量守恒定律列式求解;
②对小车依据动量定理列式求解.
易错点
理解动量守恒的条件:当一个系统不受外力或所受外力的矢量和为零,那么这个系统的总动量保持不变.
物理—选修3-5 (15分)
33.下列现象中,与原子核的内部变化无关的现象是 (填正确答案标号。选对1个得3分,选对2个得4分,选对3个得6分。每选错1个扣3分,最低得分为0分)
34.质量为M、长L的木板静止在光滑水平面上,上表面中心O左侧光滑,右侧粗糙.质量为m的金属滑块(可视为质点)在变力作用下从木板的左端点A由静止开始运动(时间t从金属滑块开始运动起计时),到达O点时突然撤去力F,此时金属滑块获得大小为
的速度,最终金属滑块刚好停留在木板的最右端。
求:
①滑块在木板左半段间滑行的时间;
②滑块与木板右半段间的动摩擦因数.
正确答案
解析
A、α粒子散射实验表明了原子内部有一个很小的核,并没有涉及到核内部的变化,故A正确;
B、光电效应是原子核外层电子脱离原子核的束缚而逸出,没有涉及到原子核的变化,故B正确;
C、天然放射现象是原子核内部发正生变化自发的放射出α粒子或电子,从而发生α衰变或β衰变,反应的过程中核内核子数,质子数,中子数发生变化,故C错误;
D、原子发光是原子跃迁形成的,即电子从高能级向低能级跃迁,释放的能量以光子形式辐射出去,没有涉及到原子核的变化,故D正确;
E、链式反应是重核裂变,热核反应是轻核的聚变,都涉及到原子核的变化,故E错误.
考查方向
粒子散射实验;天然放射现象;光电效应;重核的裂变;轻核的聚变
解题思路
天然放射现象是原子核内部自发的放射出α粒子或电子的现象;光电效应是原子核外层电子脱离原子核的束缚而逸出;α粒子散射现象是用α粒子打到金箔上,受到原子核的库伦斥力而发生偏折的现象;原子发光是原子跃迁形成的,即电子从高能级向低能级跃迁而辐射能量的过程;热核反应是轻核的聚变,链式反应是重核裂变.
易错点
了解物理现象的本质,是解答本题的关键.
正确答案
①左半段间滑行的时间;
②滑块与木板右半段间的动摩擦因数是
解析
①由于木板静止在光滑水平面上,上表面中心O左侧光滑,右侧粗糙,在O点左边由于变力作用在m上,对m有:
即
解得:t=2s
②滑块与木板右半相互作用时,选向右为正方向,根据动量守恒定律得:
即
解得:
根据功能关系得:代入解得:
考查方向
动量定理;动量守恒定律;功能关系
解题思路
在O点左边,对m运用动量定理求出时间;在O点的右边系统动量守恒,求出达最右端的共同速度,由功能关系求出摩擦系数.
易错点
在O点左边由于变力作用在m上,则运用动量定理求时间要用平均力求解.
如图所示是计算机模拟出的一种宇宙空间的情境,在此宇宙空间存在这样一个远离其它空间的区域(在该区域内不考虑区域外的任何物质对区域内物体的引力),以MN为界,上部分匀强磁场的磁感应强度为,下部分的匀强磁场的磁感应强度为
,
,方向相同,且磁场区域足够大。在距离界线为
的P点有一宇航员处于静止状态,宇航员以平行于界线的速度推出一质量为
,带电量为
的物体,发现物体在界线处速度方向与界线成60°角,进入下部分磁场,然后由于反冲宇航员沿与界线平行的直线匀速运动到达目标Q点时,刚好又接住物体而静止,求:
16.PQ间距离是多大。
17.宇航员质量是多少。
正确答案
P Q间的距离为(9分)
解析
物体在匀强磁场中作匀速圆周运动,洛仑兹力提供向心力,设物体的速度为,在MN上方运动半径为
,运动周期为
,根据牛顿第二定律和圆周运动公式
解得;
同理物体在MN下方运动半径和周期
分别为
,
物体由P点运动到MN边界时与MN的夹角为,如图所示,则有:
得到:
;
P Q间的距离为
考查方向
牛顿第二定律;向心力;带电粒子在匀强磁场中的运动
解题思路
小球在两个磁场均做匀速圆周运动,由洛仑兹力充当向心力及圆周运动的性质,可求得粒子运动的关径及周期;由粒子运动的对称性可求得PQ间的距离.
易错点
关键正确画了轨迹图由几何知识找出半径R1与h的关系.
正确答案
(11分)
解析
物体从点P到点Q所用的时间为
设宇航员的质量为,从点P到点Q速度为
由得到
根据动量守恒定律
解得
考查方向
动量守恒定律;带电粒子在匀强磁场中的运动
解题思路
由粒子的运动过程可求得宇航员运动的速度;由动量守恒可求得宇航员的质量.
易错点
关键求出宇航员匀速运动到达目标Q点时的速度,注意宇航员达Q点的时间与带电粒子从P到点Q所用的时间相等.
如图所示,一光滑弧形轨道末端与一个半径为的竖直光滑圆轨道平滑连接,两辆质量均为
的相同小车(大小可忽略),中间夹住一轻弹簧后连接在一起(轻弹簧尺寸忽略不计),两车从光滑弧形轨道上的某一高度由静止滑下,当两车刚滑入圆环最低点时连接两车的挂钩突然断开,弹簧瞬间将两车弹开,其中后车刚好停下,前车沿圆环轨道运动恰能越过圆弧轨道最高点。
求:
12.前车被弹出时的速度。
13.前车被弹出的过程中弹簧释放的弹性势能。
14.两车从静止下滑处到最低点的高度差。
正确答案
(6分)
解析
设前车在圆轨道的最高点的速度为 ,
前车在最低点位置与后车分离后的速度为,根据机械能守恒得:
解得:
考查方向
牛顿第二定律;机械能守恒定律
解题思路
前车沿圆环轨道运动恰能越过圆弧轨道最高点,根据牛顿第二定律求出最高点速度,根据机械能守恒列出等式求解.
易错点
前车恰能越过圆弧轨道最高点,说明在最高点只有重力提供前车做圆周运动的向心力.
正确答案
(6分)
解析
设两车分离前的速度为,由动量守恒定律得
即
分离前弹性势能为,根据机械能守恒得
考查方向
动量守恒定律;机械能守恒定律
解题思路
由动量守恒定律求出两车分离前速度,根据系统机械能守恒求解.
易错点
理解弹簧减少的弹性势能等于系统增加的动能.
正确答案
(4分)
解析
两车从高处运动到最低处机械能守恒
解得:
考查方向
机械能守恒定律
解题思路
两车从h高处运动到最低处机械能守恒列出等式求解.
易错点
掌握机械能守恒的条件.
扫码查看完整答案与解析