- 椭圆的定义及标准方程
- 共448题
22. 已知椭圆C过点是椭圆的左焦点,P、Q是椭圆C上的两个动点,
且|PF|、|MF|、|QF|成等差数列。
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)求证:线段PQ的垂直平分线经过一个定点A;
(Ⅲ)在(Ⅱ)条件下,点A关于原点O的对称点是B,求|PB|的最小值及相应点P的坐标。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
20.如图,设点、
分别是椭圆
的左、右焦点,
为椭圆
上位于
轴上方的任意一点,且
的面积最大值为1.
(1)求椭圆的方程;
(2)设直线,若
、
均与椭圆
相切,证明:
;
(3)在(2)的条件下,试探究在轴上是否存在定点
,点
到
的距离之积恒为1?若存在,请求出点
坐标;若不存在,请说明理由.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
21.已知函数f(x)=ax3+bx2+cx(a≠0,x∈R)为奇函数,且f(x)在x=1处取得极大值2.
(1)求函数y=f(x)的解析式;
(2)记,求函数y=g(x)的单调区间;
(3)在(2)的条件下,当k=2时,若函数y=g(x)的图象在直线y=x+m的下方,求m 的取值范围.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
21.在平面直角坐标系中,已知椭圆C:
的左焦点为
,且椭圆C的离心率
.
(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为,Q是椭圆C上异于
的任一点,直线
分别交x轴于点S,T,证明:
为定值,并求出该定值;
(3)在椭圆C上,是否存在点,使得直线
与圆
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
20. 设F1、F2分别是椭圆的左、右焦点,P为椭圆上的任意一点,满足
的周长为12。
(I)求椭圆的方程;
(II)求的最大值和最小值;
(III)已知点,是否存在过点A的直线
与椭圆交于不同的两点C,D。使得
?若存在,求直线
的方程;若不存在,请说明理由。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
20.一束光线从点出发,经直线
上一点
反射后,恰好穿过点
.
(Ⅰ)求点关于直线
的对称点
的坐标;
(Ⅱ)求以、
为焦点且过点
的椭圆
的方程;
(Ⅲ)设过点的直线交椭圆于A.B两点,并且线段AB的中点在直线
上,求直线AB的方程。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
21.已知圆经过椭圆
的右焦点
及上顶点
。
(1)求椭圆的方程;
(2)过椭圆外一点倾
斜角为
的直线
交椭圆于
、
两点,若点
在以线段
为直径的圆
的外部,求
的取值范围。
正确答案
(1)与
轴、
轴交点为
和
,
,
椭圆方程为:
(2)设直线的方程为:
(
)
可得:
可得:
即
设,
,
则,
化简得:
可得:,
取值范围为
解析
解析已在路上飞奔,马上就到!
知识点
20.已知椭圆的左、右焦点分别为
,椭圆上的点
满足
,且
的面积为
.
(1)求椭圆C的方程;
(2)设椭圆的左、右顶点分别为
,过点
的动直线
与椭圆
相交于
两点,直线
与直线
的交点为
,证明:点
总在直线
上。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
23.给定椭圆,称圆心在原点
,半径为
的圆是椭圆
的“准圆”.若椭圆
的一个焦点为
,其短轴上的一个端点到
的距离为
(1)求椭圆的方程和其“准圆”方程;
(2)点是椭圆
的“准圆”上的一个动点,过点
作直线
,使得
与椭圆
都只有一个交点,且
分别交其“准圆”于点
.
①当为“准圆”与
轴正半轴的交点时,求
的方程;
②求证:为定值
正确答案
(1)
所以,椭圆方程:,
准圆方程:
(2)①易知且直线斜率存在,
设直线为
联立
因为椭圆与直线有且只有一个交点,
所以,因此
’
所以的方程为
②<ⅰ>当的斜率存在时,设点
,
设直线
由---(*)
同理,联立和椭圆方程可得:
---(**)
由(*)(**)可知,是方程
的两个根
,
因此是准圆的直径,所以
<ⅱ>当中有一条斜率不存在时,
,此时
所以
解析
解析已在路上飞奔,马上就到!
知识点
20.已知椭圆的离心率为
,且过点
.
(1)求椭圆的方程;
(2)若过点C(-1,0)且斜率为的直线
与椭圆相交于不同的两点
,试问在
轴上是否存在点
,使
是与
无关的常数?若存在,求出点
的坐标;若不存在,请说明理由.
正确答案
解: (1)∵椭圆离心率为,
又椭圆过点(
,1),代入椭圆方程,得
所以
∴椭圆方程为,即
.
(2)在x轴上存在点M,使
是与K无关的常数. 证明如下:
假设在x轴上存在点M(m,0),使是与k无关的常数,
∵直线L过点C(-1,0)且斜率为K,∴L方程为,
由 得
设,则
∵
∴
设常数为t,则.
整理得对任意的k恒成立,
解得
,
即在x轴上存在点M(), 使
是与K无关的常数.
解析
解析已在路上飞奔,马上就到!
知识点
扫码查看完整答案与解析