- 椭圆的定义及标准方程
- 共448题
6.如图,将四边形ABCD中△ADC沿着AC翻折到ADlC,则翻折过程中线段DB中点M的轨迹是( )
正确答案
解析
考查方向
解题思路
过B作AC的垂线BE,过D作AC的垂线DF,连接DE,BF,然后证明在翻折过程中,BD中点到BE的中点的距离为定值得答案.
易错点
几何性质出现错误。
知识点
20.在平面直角坐标系中,已知椭圆
的焦距为
且点
在
上.
(Ⅰ)求的方程;
(Ⅱ)设直线与椭圆
切于A点,与抛物线
切于B点,求直线
的方程和线段AB的长.
正确答案
(1);(2)当直线
为
时,|AB|=
;
当直线为
时, |AB|=
;
解析
(Ⅰ)由题意得:,------------------------------3分
故椭圆的方程为:
---------------------------------------------------4分
(Ⅱ)依题意可知直线存在斜率,设直线
由----------------①------------------5分
直线
与椭圆
相切
②-----6分
由-----------------------③----------------------7分
直线
与抛物线
相切
④-----8分
由②、④消去k得:,解得
或
,-------------------------9分
由②知,故
不合舍去,由
得
---------------------------10分
直线
的方程为
当直线为
时,由①易得
由③易得
,此时|AB|=
;
当直线为
时,由图形的对称性可得|AB|=
.
综上得直线的方程为
或
,线段|AB|=
.----------------12分
考查方向
解题思路
第(1)问直接根据题中条件列方程组求解即可;第(2)问先设直线l的方程,然后分别将l的方程与圆和椭圆的方程联立消元得到判别式等于0得到关于m和k的方程组求解即可。
易错点
在第(2)问中联立消元时运算求解出错;不会转化题中给出的条件直线与椭圆
切于A点,与抛物线
切于B点。
知识点
已知曲线C的方程是(m>0,n>0),且曲线C过A(
,
),B(
,
)两点,O为坐标原点.
23.求曲线C的方程;
24.设M(x1,y1),N(x2,y2)是曲线C上两点,向量p=(x1,
y1),q=(
x2,
y2),且p·q=0,若直线MN过(0,
),求直线MN的斜率.
正确答案
见解析
解析
解:(1)由题可得:,解得
所以曲线方程为
考查方向
解题思路
1)根据题意联立解方程求出曲线方程
2)写出直线方程,与曲线联立,得到韦达定理
3)根据p·q=0,得到x1,x2的关系
4)解方程得到结果
易错点
本题较简单,一般在计算出错和对p·q=0处理出错
正确答案
见解析
解析
解:
(2)设直线的方程为
,代入椭圆方程为
得:
∴
,
∴=
∴
即
考查方向
解题思路
1)根据题意联立解方程求出曲线方程
2)写出直线方程,与曲线联立,得到韦达定理
3)根据p·q=0,得到x1,x2的关系
4)解方程得到结果
易错点
本题较简单,一般在计算出错和对p·q=0处理出错
已知椭圆的中心在坐标原点,以椭圆中的a,b,c为边可以构成一个三角形ABC,且在三角形ABC中满足一个等式,椭圆的离心率为
;
23.求椭圆的方程;
24.若椭圆上存在不同两点关于直线对称,求
的取值范围。
正确答案
解析
(1)设椭圆的方程为,于是由
,结合正弦定理可以化为
,又
,
从而,
所以椭圆的方程为
考查方向
解题思路
根据已知条件构造方程组解出即可。
易错点
不知道准线怎么转化。
正确答案
解析
(2)设椭圆上有两点
,
关于直线
对称,则
①
②
两式相减整理得
设中点为
,于是有
又
点在直线
上,即
,解得
,
,而
在椭圆内,所以
,
即,解得
考查方向
解题思路
根据步骤来计算。
易错点
不会用设而不求的方法来求解。
20.已知中心在原点,焦点在轴上的椭圆
,其上一点
到两个焦点
的距离之和为4,离心率为
(1)求椭圆的方程;
(2)若直线与曲线
交于
两点,求
面积的取值范围.
正确答案
(1);(2)
解析
试题分析:本题属于直线和椭圆位置关系的基本问题,题目的难度是逐渐由易到难,
(1)根据已知条件构造方程组;
(2)用设而不求的方法将面积表示成关于斜率的表达式,然后换元求出面积的取值范围。
(1)设椭圆的标准方程为,由条件得
,
所以椭圆的方程
(2)设,由
,得
,
故 ①
设的面积为
,由
,知
令则
,因此,
对函数,知
因此函数在
上单增,
因此,
考查方向
解题思路
本题考查直线和椭圆的位置关系,解题步骤如下:
(1)根据已知条件构造方程组;
(2)用设而不求的方法将面积表示成关于斜率的表达式,然后换元求出面积的取值范围。
易错点
第二问不会用设而不求的方法来解决。
知识点
扫码查看完整答案与解析