热门试卷

X 查看更多试卷
1
题型: 单选题
|
单选题 · 5 分

6.如图,将四边形ABCD中△ADC沿着AC翻折到ADlC,则翻折过程中线段DB中点M的轨迹是(   )

A椭圆的一段

B抛物线的一段

C一段圆弧

D双曲线的一段

正确答案

C

解析

考查方向

本题考查轨迹方程,考查了学生的空间想象能力和思维能力,有一定难度.

解题思路

过B作AC的垂线BE,过D作AC的垂线DF,连接DE,BF,然后证明在翻折过程中,BD中点到BE的中点的距离为定值得答案.

易错点

几何性质出现错误。

知识点

椭圆的定义及标准方程
1
题型:简答题
|
简答题 · 12 分

20.在平面直角坐标系中,已知椭圆的焦距为且点上.

(Ⅰ)求的方程;

(Ⅱ)设直线与椭圆切于A点,与抛物线切于B点,求直线的方程和线段AB的长.

正确答案

(1);(2)当直线时,|AB|=

当直线时, |AB|=

解析

(Ⅰ)由题意得:,------------------------------3分

故椭圆的方程为:---------------------------------------------------4分

(Ⅱ)依题意可知直线存在斜率,设直线

----------------①------------------5分

直线与椭圆相切②-----6分

-----------------------③----------------------7分

直线与抛物线相切④-----8分

由②、④消去k得:,解得,-------------------------9分

由②知,故不合舍去,由---------------------------10分

直线的方程为

当直线时,由①易得由③易得,此时|AB|=

当直线时,由图形的对称性可得|AB|=

综上得直线的方程为,线段|AB|=.----------------12分

考查方向

本题主要考查圆锥曲线的性质、直线与圆锥曲线的位置关系等知识,意在考查考生的运算求解能力和综合解决问题的能力。

解题思路

第(1)问直接根据题中条件列方程组求解即可;第(2)问先设直线l的方程,然后分别将l的方程与圆和椭圆的方程联立消元得到判别式等于0得到关于m和k的方程组求解即可。

易错点

在第(2)问中联立消元时运算求解出错;不会转化题中给出的条件直线与椭圆切于A点,与抛物线切于B点。

知识点

椭圆的定义及标准方程椭圆的几何性质直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 12 分

已知曲线C的方程是(m>0,n>0),且曲线C过A(),B(,  )两点,O为坐标原点.

23.求曲线C的方程;

24.设M(x1,y1),N(x2,y2)是曲线C上两点,向量p=(x1y1),q=(x2y2),且p·q=0,若直线MN过(0,),求直线MN的斜率.

第(1)小题正确答案及相关解析

正确答案

见解析

解析

解:(1)由题可得:,解得

所以曲线方程为

考查方向

本题考察了曲线方程的求解,考察了直线与曲线的位置关系

解题思路

1)根据题意联立解方程求出曲线方程

2)写出直线方程,与曲线联立,得到韦达定理

3)根据p·q=0,得到x1,x2的关系

4)解方程得到结果

易错点

本题较简单,一般在计算出错和对p·q=0处理出错

第(2)小题正确答案及相关解析

正确答案

见解析

解析

解:

(2)设直线的方程为,代入椭圆方程为得:

=

考查方向

本题考察了曲线方程的求解,考察了直线与曲线的位置关系

解题思路

1)根据题意联立解方程求出曲线方程

2)写出直线方程,与曲线联立,得到韦达定理

3)根据p·q=0,得到x1,x2的关系

4)解方程得到结果

易错点

本题较简单,一般在计算出错和对p·q=0处理出错

1
题型:简答题
|
简答题 · 12 分

已知椭圆的中心在坐标原点,以椭圆中的a,b,c为边可以构成一个三角形ABC,且在三角形ABC中满足一个等式,椭圆的离心率为

23.求椭圆的方程;

24.若椭圆上存在不同两点关于直线对称,求的取值范围。

第(1)小题正确答案及相关解析

正确答案

解析

(1)设椭圆的方程为,于是由,结合正弦定理可以化为,又

从而

所以椭圆的方程为

考查方向

本题主要考查了椭圆的标准方程的求解。

解题思路

根据已知条件构造方程组解出即可。

易错点

不知道准线怎么转化。

第(2)小题正确答案及相关解析

正确答案

解析

(2)设椭圆上有两点关于直线对称,则

两式相减整理得

中点为,于是有点在直线上,即,解得,而在椭圆内,所以

,解得

考查方向

本题主要考查了直线与圆锥曲线的综合问题。

解题思路

根据步骤来计算。

易错点

不会用设而不求的方法来求解。

1
题型:简答题
|
简答题 · 12 分

20.已知中心在原点,焦点在轴上的椭圆,其上一点到两个焦点的距离之和为4,离心率为

(1)求椭圆的方程;

(2)若直线与曲线交于两点,求面积的取值范围.

正确答案

(1);(2)

解析

试题分析:本题属于直线和椭圆位置关系的基本问题,题目的难度是逐渐由易到难,

(1)根据已知条件构造方程组;

(2)用设而不求的方法将面积表示成关于斜率的表达式,然后换元求出面积的取值范围。

(1)设椭圆的标准方程为,由条件得

所以椭圆的方程

(2)设,由,得

        ①

的面积为,由,知

,因此,

对函数,知

因此函数上单增,

因此,

考查方向

本题考查了直线和椭圆的位置关系。

解题思路

本题考查直线和椭圆的位置关系,解题步骤如下:

(1)根据已知条件构造方程组;

(2)用设而不求的方法将面积表示成关于斜率的表达式,然后换元求出面积的取值范围。

易错点

第二问不会用设而不求的方法来解决。

知识点

椭圆的定义及标准方程椭圆的相关应用直线与椭圆的位置关系
下一知识点 : 椭圆的几何性质
百度题库 > 高考 > 文科数学 > 椭圆的定义及标准方程

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题