- 圆的切线的性质定理的证明
- 共15题
已知点在
直径
的延长线上,
切
于
点,
是
的平分线且交
于点
,交
于点
.
28.求的度数;
29.若,求
的值.
正确答案
(1);
解析
(1)∵为
的切线,∴
,又
是
的平分线,∴
.由
,得
,
又,∴
.
考查方向
解题思路
先根据弦切角定理得,然后利用角平分线得到
进而得
即可证明;
易错点
没有发现,导致无法证明;
正确答案
(2)
解析
(2)∵,∴∴
,又
,∴
.在
中,∴
.
考查方向
解题思路
先证明,然后即可根据对应边成比例证明。
易错点
看不出,导致没有思路;
选修4—1:几何证明选讲
如图,正方形ABCD边长为2,以A为圆心、DA为半径的圆弧与以BC为直径的半圆O交于点F,连结BF并延长交CD于点E.
27.求证:E为CD的中点;
28.求EF·FB的值.
正确答案
见解析
解析
解:(Ⅰ)由题可知是以为
圆心,
为半径作圆,而
为正方形,
∴为圆
的切线.
依据切割线定理得.
∵圆以
为直径,∴
是圆
的切线,
同样依据切割线定理得.
故.
∴为
的中点.
考查方向
解题思路
本题解题思路
1)借助圆的切割定理得出,
进而证明第一问
2)借助等面积求解FC,使用射影定理得到第二问
易错点
本题易错cd是两圆的切线,
正确答案
见解析
解析
解:
(Ⅱ)连结,∵
为圆
的直径,
∴
由
得
又在中,由射影定理得
考查方向
解题思路
本题解题思路
1)借助圆的切割定理得出,
进而证明第一问
2)借助等面积求解FC,使用射影定理得到第二问
易错点
本题易错cd是两圆的切线,
正确答案
知识点
选修4-1: 几何证明选讲.
如图所示,已知与⊙
相切,
为切点,过点
的割线交圆于
两点,弦
,
相交于点
,
为
上一点,且
.
28.求证:;
29.若,求
的长.
正确答案
证明略
解析
∵,
∴
∽
,∴
又∵,∴
, ∴
,
∴∽
, ∴
, ∴
又∵,∴
考查方向
解题思路
先证明,再证
,可证得
易错点
找不准三角形相似或全等的条件
正确答案
PA=
解析
∵,
∴
,∵
∴
由28题可知:
,解得
.
∴. ∵
是⊙
的切线,∴
∴,解得
.得
考查方向
解题思路
先综合题中条件及28题中结论,解出EP=,BP=
,再由切割线定理,解得PA=
易错点
找不准三角形相似或全等的条件
选修4-1:几何证明选讲
如图,过圆外一点
作一条直线与圆
交于
两点,且
,作直线
与圆
相切于点
,连结
交
于点
,已知圆
的半径为
,
.
27.求的长;
28.求的值.
正确答案
(1)3;
解析
(Ⅰ)延长交圆
于点
,连结
,则
,
又,所以
,
又,可知
,所以
.
根据切割线定理得,即
.
考查方向
解题思路
1)第一问由切割线定理可得;
2)第二问将两条线段归到两个相似三角形中,用相似得到比例关系。
易错点
三角形相似容易找错,切割线定理用不熟练。
正确答案
(2)
解析
(Ⅱ)过作
于
,则
,从而有
,
又由题意知,所以
,
因此.
考查方向
解题思路
1)第一问由切割线定理可得;
2)第二问将两条线段归到两个相似三角形中,用相似得到比例关系。
易错点
三角形相似容易找错,切割线定理用不熟练。
扫码查看完整答案与解析