热门试卷

X 查看更多试卷
1
题型:填空题
|
填空题

随着人类对温室效应和资源短缺等问题的重视,如何降低大气中CO2的含量及有效地开发利用CO2,引起了各国的普遍重视。

(1)目前工业上有一种方法是用CO2来生产燃料甲醇。为探究该反应原理,现进行如下实验,在体积为1L的密闭容器中,充入1 mol CO2和3.25 mol H2,在一定条件下发生反应,测定CO2、CH3OH(g)和H2O(g)的浓度随时间变化如下图所示:

①写出该工业方法制取甲醇的化学方程式___。

②从反应开始到平衡,氢气的平均反应速率v(H2)=____mol/(L·min)。 平衡时CO2的转化率为____。

③该条件下反应的平衡常数K的值为____。当温度降低时K变大,则该反应的△H____0(填“>”“<”或“=”)。

④下列措施中能使n(CH3OH)/n(CO2)增大的是____。

A.升高温度

B.充入氦气

C.将水蒸气从体系中分离

D.用更有效的催化剂

(2)选用合适的合金作为电极,以氢氧化钠、甲醇、水、氧气为原料,可以制成一种 以甲醇为原料的燃料电池,此燃料电池负极应加入或通入的物质是____; 正极的电极方程式为___。

正确答案

(1)①CO2+3H2CH3OH+H2O  ;②0. 225  ;75% ;③2.25 ;< ;④C

(2)甲醇、氢氧化钠、水(答出甲醇即可) ;O2+4e-+2H2O=4OH-

1
题型:填空题
|
填空题

氮是地球上含量丰富的一种元素,氨和肼(N2H4)是氮的两种常见化合物,在科学技术和生产中有重要的应用。

Ⅰ.(1)N2H4中的N原子最外层达到8电子稳定结构,写出N2H4的结构式_____________。

(2)NH3与NaClO反应可得到肼(N2H4),该反应的化学方程式为                

(3)肼是一种高能燃料,有关化学反应的能量变化如右图所示,写出肼燃烧的热化学方程式                                    

Ⅱ.氨的合成是最重要的化工生产之一。已知:

N2(g)+3H2(g)2NH3(g)ΔH=-92.4 kJ·mol-1

在3个体积均为2L的密闭容器中,在相同的温度下,使用相同的催化剂合成氨,实验测得反应在起始、达到平衡时的有关数据如下表所示:    

试回答:

(1)下列各项能说明该反应已达到平衡状态的是______________(填写序号字母)。

a.容器内N2、H2、NH3的浓度之比为1︰3︰2

b.v(N2=3v(H2

c.容器内压强保持不变

d.混合气体的密度保持不变

(2)分析上表数据,下列关系正确的是_________(填写序号字母)。

(3)容器乙中反应从开始到达平衡平均速率为v(H2)= _____________。

III.直接供氨式碱性燃料电池的电池反应式是4NH3+3O2=2N2+6H2O,电解质溶液一般使用KOH溶液,则负极电极反应式是__________        

正确答案

Ⅰ.(1)(1分)

(2) 2NH3+NaClO=N2 H4+NaCl+H2O(2分)

(3)N2 H4(g) + O2(g) = N2(g) + 2H2O(g ) ΔH=-534 kJ·mol-1(2分)

Ⅱ.(1)C(2分)

(2)A C D(3分)

(3)0.3 mol·L-1·min-1(2分)

III.2NH3 + 6OH- + 6e- = N2 + 6H2O(2分)

试题分析:Ⅰ.(1)N2H4中的N原子可达到8电子的稳定结构,氮原子最外层3个电子形成三对共用电子对,和未成键的一对电子形成8电子稳定结构,每个氮原子和两个氢原子形成共价键,氮原子间形成一个共价键,结构式为:,故答案为:

⑵NH3与NaClO反应可得到肼(N2H4),该反应的化学方程式为:2NH3+NaClO=N2 H4+NaCl+H2O,答案:2NH3+NaClO=N2 H4+NaCl+H2O;⑶从图中读出,△H=22218kJ·mol-1-2752kJ·mol-1=-534 kJ·mol-1,所以肼燃烧生成气态水的热化学方程式为:N2 H4(g) + O2(g) = N2(g) + 2H2O(g ) ΔH=-534 kJ·mol-1,答案:N2 H4(g) + O2(g) = N2(g) + 2H2O(g ) ΔH=-534 kJ·mol-1

Ⅱ.⑴A、应用速率之比来判断,反应过程中按照比例进行反应,故A不能判断该反应达到化学平衡状态;B、按照速率之比等于系数之比,表述的是正反应速率,当某种物质的正反应速率和逆反应速率相等是表明反应达到平衡,所以当3v(N2)正=v(H2)逆 时反应达到平衡,故B不能判断该反应达到化学平衡状态;C、当容器内压强保持不变,说明反应达到平衡,故C能判断该反应达到化学平衡状态;反应体系内质量守恒,体积一定,故混合气体的密度不变,所以混合气体的密度保持不变,不能说明反应达到平衡,故D不能判断该反应达到化学平衡状态;答案:C。

⑵A、正确,先用1.5L的容器进立与乙等效平衡,然后放大到3L,平衡向生成N2的方向即逆方向移动,所以2c1>1.5 mol·L ―1; B、不正确,丙等效于3molH2,1molN2从正确向建立平衡,甲多加了1molN2,平衡正向移动;C、正确,反应体系内质量守恒,体积一定,混合气体的总质量甲是乙的2倍,所以混合气体的密度,2ρ12;D、正确,温度不变,平衡常数不变,K= K= K。答案:A C D。

⑶v(H2)= 3v(N2)= ,答案:0.3 mol·L-1·min-1

III.NH3作还原剂,生成1molN2失去6mol电子,用OH调节使方程式两边电荷守恒,负极反应,2NH3 + 6OH- + 6e- = N2 + 6H2O,答案:2NH3 + 6OH- + 6e- = N2 + 6H2O

1
题型:填空题
|
填空题

(14分)美国Bay等工厂使用石油热裂解的副产物甲烷来制取氢气,其生产流程如下图:

(1)此流程的第II步反应为:CO(g)+H2O(g)H2(g)+CO2(g),该反应的平衡常数随温度的变化如下表:

温度/℃

400

500

830

平衡常数K

10

9

1

从上表可以推断:此反应是       (填“吸”或“放”)热反应。在830℃下,若开始时向恒容密闭容器中充入1mo1CO和2mo1H2O,则达到平衡后CO的转化率为          

(2)在500℃,以下表的物质的量(按照CO、H2O、H2、CO2的顺序)投入恒容密闭容器中进行上述第II步反应,达到平衡后下列关系正确的是

实验编号

反应物投入量

平衡时H2浓度

吸收或放出的热量

反应物转化率

A

1、1、0、0

c1

Q1

α1[来源:]

B

0、0、2、2

c2

Q2

α2

 

C

2、2、0、0

c3

Q3

α3

A.2c1= c2 =c3     B.2Q1=Q2=Q3      C.α12 3        D.α12 ="1"

(3)在一个绝热等容容器中,不能判断此流程的第II步反应达到平衡的是        

①体系的压强不再发生变化                           ②混合气体的密度不变

③混合气体的平均相对分子质量不变             ④各组分的物质的量浓度不再改变

⑤体系的温度不再发生变化                           ⑥v(CO2)v(H2O)

(4)下图表示此流程的第II步反应,在t1时刻达到平衡、在t2时刻因改变某个条件浓度发生变化的情况:图中t2时刻发生改变的条件是                                   

(写出两种)。若t4时刻通过改变容积的方法将压强增大为原先的两倍,在图中t4和t5区间内画出CO、CO2浓度变化曲线,并标明物质(假设各物质状态均保持不变)。

正确答案

(1)放;66.7%(2)AD (3)②③(4)降低温度,或增加水蒸汽的量,或减少氢气的量;(每格2分)

(1)温度越高,平衡常数越小,所以正反应是放热反应。

CO(g)+H2O(g)H2(g)+CO2(g)

起始量(mol)               1      2       0      0

转化量(mol)               x      x        x     x

平衡量(mol)             1-x    2-x      x     x

根据平衡常数知

解得x=2/3,所以平衡后CO的转化率为是66.7%。

(2)因为反应前后体积,即改变压强平衡不会发生移动,根据所给的反应物投入量来看ABC就是等效的,虽然氢气的含量,但氢气的浓度不同,其中BC相等且都是A的2倍。根据500℃平衡常数可计算出A中反应物的转化率均是75%【计算方法同(1)】,即平衡时A中CO、H2O、H2、CO2分别是0.25mol、0.25mlol、0.75mol、0.75mol,则平衡时B、C中CO、H2O、H2、CO2分别都为0.5mol、0.5mol、1.5mol、1.5mol。即B、C中转化率分别是25%和75%。A中放热Q1,所以反应热是-2Q1kJ·mol1。则C中放热2Q1,B中吸热Q1。答案AD正确。

(3)因为体系绝热,而反应是放热反应,所以压强会发生变化,①⑤可以。反应前后气体质量和容器的体积均不发生变化,所以密度不变,②不可以。反应前后气体质量和物质的量均不发生变化,所以相对分子质量不变,③不可以。④⑥符合化学平衡的概念正确。答案是②③。

(4)由图像可知t2时刻CO浓度减小,CO2浓度增大,因此改变的条件是降低温度,或增加水蒸汽的量。t4时刻通过改变容积的方法将压强增大为原先的两倍,平衡不移动,但物质的浓度均增大,都变为原来大2倍,如图所示:

1
题型:简答题
|
简答题

将洁净的金属片Fe、Zn、A、B 分别与Cu用导线连接浸在合适的电解质溶液里.实验并记录电压指针的移动方向和电压表的读数如下表所示:

根据以上实验记录,完成以下填空:

(1)构成两电极的金属活动性相差越大,电压表的读数越______(填“大”、“小”).

Zn、A、B三种金属活动性由强到弱的顺序是______.

(2)Cu与A组成的原电池,______为负极,此电极反应式为(失去电子数用ne-表示______.

(3)A、B形成合金,露置在潮湿空气中,______先被腐蚀.

正确答案

(1)Fe、Zn分别与Cu、电解质溶液形成原电池时,由表可知:前者的电压小,后者的电压大,而锌的活泼性大于铁,即金属活动性相差越大,电压表的读数越大,根据原电池中,电子经导线从活泼金属流向不活泼金属,由表可知:金属活泼性:Cu>A,B>Cu,金属活动性相差越大,电压表的读数越大,可知Zn>B,所以金属的活泼性:Zn>B>A,

故答案为:大;Zn>B>A;    

(2)由第三组数据可知电压为负值,说明电流的方向是相反的,即Cu→A构成原电池,Cu为负极,失去电子,电极反应式:Cu-2e-=Cu2+

故答案为:Cu;Cu-2e-=Cu2+

(3)根据原电池中,活泼金属做负极,被腐蚀,由(1)可知金属的活泼性:B>A,即B先被腐蚀,故答案为:B.

1
题型:简答题
|
简答题

有A、B、C、D四种短周期元素,其原子序数依次增大.A、B可形成A2B和A2B2两种化合物,B、C同主族且可形成CB2和CB3两种化合物.回答下列问题.

(1)A2B2的电子式为______.

(2)CB2通入A2B2溶液中可被氧化为W,用W的溶液(体积为1L,假设变化前后溶液体积变化忽略不计)组装成原电池(如图所示).在b电极上发生的反应可表示为:PbO2+4H++SO42-+2e-=PbSO4+2H2O,则在a电极上发生的反应可表示为______.

(3)金属元素E是中学化学常见元素,位于元素周期表的第四周期.该元素可与D形成ED2和ED3两种化合物.将E的单质浸入ED3溶液中(如图甲所示),溶液由黄色逐渐变为浅绿色,该反应的离子方程式为______.

(4)依据(3)中的反应,可用单质E和石墨为电极设计一个原电池,则在该原电池工作时,石墨一极发生的反应可以表示为______.比较甲、乙两图,说明石墨除形成闭合回路外所起的作用是______.

正确答案

A、B可形成A2B和A2B2两种化合物,可能为H2O、H2O2或Na2O、Na2O2,A、B、C、D四种短周期元素,其原子序数依次增大,则A为H元素,B为O元素,B、C同主族且可形成CB2和CB3两种化合物,应为SO2和SO3,则C为S元素,D应为Cl元素.

(1)A2B2为H2O2,为共价化合物,电子式为

,故答案为:

(2)CB2通入A2B2溶液中可被氧化为W,则w为H2SO4,形成铅蓄电池,负极反应为Pb-2e-+SO42-=PbSO4

故答案为:Pb-2e-+SO42-=PbSO4;   

(3)金属元素E是中学化学常见元素,位于元素周期表的第四周期.该元素可与D形成ED2和ED3两种化合物,则E为Fe元素,将Fe浸入到FeCl3中,发生反应为Fe+2Fe3+=3Fe2+,溶液由黄色逐渐变为浅绿色,

故答案为:Fe+2Fe3+=3Fe2+

(4)石墨--铁在氯化铁电解质溶液中形成原电池,铁做负极,发生反应为Fe-2e-=Fe2+,在正极上得电子被还原,发生反应为2Fe3++2e-=2Fe2+,氧化反应和还原反应分别在不同极上发生.

故答案为:2Fe3++2e-=2Fe2+;使还原反应和氧化反应在电解质溶液中的不同区域内发生.

下一知识点 : 原电池正、负极的判断方法
百度题库 > 高考 > 化学 > 原电池工作原理的实验探究

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题