- 直线、平面垂直的判定与性质
- 共445题
已知在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AB=2,PA=AD=1,E,F分别是AB、PD的中点。
(1)求证:AF⊥平面PDC;
(2)求三棱锥B﹣PEC的体积;
(3)求证:AF∥平面PEC。
正确答案
见解析。
解析
(1)证明:∵PA⊥平面ABCD,∴PA⊥CD,
由底面ABCD是矩形,∴CD⊥DA,又PA∩AD=A,∴CD⊥平面PAD,
∴CD⊥AF。
∵PA=AD=1,F是PD的中点,
∴AF⊥PD,
又PD∩DC=D,∴AF⊥平面PDC。
(2)解:

∵PA⊥平面ABCD,
VB﹣PEC=VP﹣BEC=

(3)
取PC得中点M,连接MF、ME。
∵


∴四边形AEMF是平行四边形,
∴AF∥EM。
又AF⊄平面PEC,EM⊂平面PEC,
∴AF∥平面PEC。
知识点
如图,已知平面












正确答案
解析
因为



设



在三角形中有





知识点
如图2所示,已知四棱锥P–ABCD的底面是直角梯形,∠ABC=∠BCD = 90°,AB = BC = PB = PC = 2CD,侧面PBC⊥底面ABCD。
(1)证明:PA⊥BD;
(2)求二面角P – BD – C的大小;
(3)求证:平面PAD⊥平面PAB。
正确答案
见解析。
解析
解法一:
(1)取BC中点O,连结AO交BD于点E,连结PO
∵PB = PC,∴PO⊥BC
又∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD = BC
∴PO⊥平面ABCD
在直角梯形ABCD中
∵AB = BC = 2CD,易知Rt△ABO≌Rt△BCD
∴∠BEO =∠OAB +∠DBA =∠DBC +∠DBA = 90°
即AO⊥BD,由三垂线定理知PA⊥BD。
(2)连结PE,由PO⊥平面ABCD,AO⊥BD
得PE⊥BD
∴∠PEO为二面角P – BD – C的平面角
设AB = BC = PB = PC = 2CD = 2a
则PO =
在Rt△PEO中,tan∠PEO =
∴二面角P – BD– C的大小为arctan
(3)取PB的中点为N,连结CN,则CN⊥PB
又∵AB⊥BC,BC是PB在面ABCD内的射影
∴AB⊥PB,又PB∩BC = B
∴AB⊥面PBC,∴平面PAB⊥平面PBC
∵CN⊥PB,面PAB∩面PBC = PB
∴CN⊥平面PAB
取PA的中点为M,连结DM、MN
则MN∥AB∥CD,∵MN =
∴四边形MNCD为平行四边形
∴CN∥DM,∴DM⊥平面PAB
∴平面PAD⊥平面PAB。
解法二:
(1)取BC中点为O
∵侧面PBC⊥底面ABCD,△PBC为等边三角形
∴PO⊥底面ABCD,以BC的中点O为坐标原点,以BC所在直线为x轴,过点O与AB平行的直线为y轴,直线OP为z轴,如图乙所示,建立空间直角坐标系。
不妨设CD = 1
则AB = BC = PB = PC = 2,PO =
∴A(1,– 2,0),B (1,0,0),D (– 1,– 1,0),P (0,0,
∴


∵


∴

(2)连结AO,设AO与BD相交于点E,连结PE
由

∴

又∵EO为PE在平面ABCD内的射影,∴PE⊥BD
∴∠PEO为二面角P – BD – C的平面角
在Rt△BEO中,OE = OB · sin∠OBE =
∴在Rt△PEO中,tan∠PEO =
∴二面角P – BD – C的大小为arctan
(3)取PA的中点M,连结DM
则M
∴


∴

又∵

∴


∴

∴平面PAD⊥平面PAB。
知识点
如图,矩形ABCD中,对角线AC、BD的交点为G,AD⊥平面ABE,AE⊥EB,AE=EB=BC=2,F为CE上的点,且BF⊥CE。
(1)求证:AE⊥平面BCE;
(2)求证:AE∥平面BFD;
(3)求三棱锥C-GBF的体积。
正确答案
见解析。
解析
知识点
如图,在三棱锥





(1)证明:

(2)求三棱锥
(3)在




正确答案
见解析。
解析
(1)因为


又



由三视图可得,在






(2)由三视图可得
由⑴知


又三棱锥

所以,所求三棱锥的体积
(3)取





因为


因为














知识点
如图1,在直角梯形








(1) 求证:


正确答案
见解析。
解析
解:(1)在图1中,可得

取





面





∴
又

∴
另解:在图1中,可得

∵面ACD






(2) 由(1)可知


所以
由等积性可知几何体
知识点
已知四棱锥






(1) 证明:

(2) 求三棱锥

正确答案
见解析
解析
(1) 





∴
∴在△



∴

∴
(2)∵

∴

∴
知识点
如图所示,PA⊥平面ABCD,四边形ABCD为正方形,且2PA=AD, E、F、G、H分别是线段PA、PD、CD、BC的中点.
(1)求证:BC∥平面EFG;
(2)求证:DH⊥平面AEG;
(3)求三棱锥E-AFG与四棱锥P-ABCD的体积比.
正确答案
见解析。
解析
(1)∵BC∥AD,AD∥EF,∴BC∥EF,,,,,,,,,。2分

(2)∵PA⊥平面ABCD,∴PA⊥DH ,即 AE⊥DH,,,,,,,,,。5分
∵△ADG≌△DCH ,∴∠HDC=∠DAG,∠AGD+∠DAG=90°
∴∠AGD+∠HDC=90°
∴DH⊥AG
又∵AE∩AG=A,∴DH⊥平面AEG,,,,,,,,,,,。8分
(3)

知识点
设




①若






③若






其中,正确命题的个数是
正确答案
解析
略
知识点
如图,平行四边形ABCD中,CD=1,
(1)求证:
(2)求证:
(3)求三棱锥
正确答案
见解析。
解析
(1)证明:平面

∴
∴
又
∴
(2)证明:连结


∴

又
∴
∴

(3)解:设

依题意:
∴
即:点


∴
知识点
扫码查看完整答案与解析





























































