热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 12 分

18.已知三棱锥PABC中,PA⊥平面ABC,AB⊥AC,PA=AC=AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.

(1)证明:CM⊥SN;

(2)求SN与平面CMN所成角的大小.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

直线与直线垂直的判定与性质直线与平面垂直的判定与性质线面角和二面角的求法
1
题型:填空题
|
填空题 · 5 分

15.给出下列命题:

①     已知为异面直线,过空间中不在上的任意一点,可以作一个平面与都平行;

②     在二面角的两个半平面内分别有直线,则二面角是直二面角的充要条件是

③已知异面直线,分别在上的线段的长分别为4和2,的中点分别为,则

④若正三棱锥的内切球的半径为1,则此正三棱锥的体积最小值

则正确命题的编号是

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

充要条件的判定命题的真假判断与应用棱柱、棱锥、棱台的体积直线与平面平行的判定与性质线面角和二面角的求法
1
题型:简答题
|
简答题 · 12 分

17.三棱锥P−ABC中,PA⊥平面ABC,AB⊥BC。

(1)证明:平面PAB⊥平面PBC;

(2)若,PB与底面ABC成60°角,分别是的中点,是线段上任意一动点(可与端点重合),求多面体的体积。

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

组合几何体的面积、体积问题直线与平面垂直的判定与性质平面与平面垂直的判定与性质线面角和二面角的求法
1
题型:填空题
|
填空题 · 5 分

14. 如图,已知长方体的各顶点都在同一球面上,且,则这个球的体积为

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

线面角和二面角的求法
1
题型:简答题
|
简答题 · 12 分

19.如图所示,四边形ABCD是矩形,,F为CE上的点,且BF平面ACE,AC与BD交于点G

(1)求证:AE平面BCE;

(2)求证:AE//平面BFD;

(3)求三棱锥C-BGF的体积。

正确答案

(1)∵    又知四边形ABCD是矩形,故AD//BC

   故可知

∵  BF平面ACE   ∴ BF AE

∴ AE平面BCE

(2) 依题意,易知G为AC的中点

又∵  BF平面ACE   所以可知 BFEC, 又BE=EC

∴ 可知F为CE的中点

故可知 GF//AE

又可知

∴ AE//平面BFD

(3)由(1)可知AE平面BCE,又AE//GF

∴ GF平面BCE

    所以GF的长为三棱锥G-BCF的高  GF=.  

∴  三棱锥C-BGF的体积为

解析

解析已在路上飞奔,马上就到!

知识点

线面角和二面角的求法
1
题型:简答题
|
简答题 · 13 分

20.在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,且AC=AD=CD=DE=2,AB=1

(1)请在线段CE上找到点F的位置,使得恰有直线BF∥平面ACD,并证明这一事实;

(2)求多面体ABCDE的体积;

(3)求直线EC与平面ABED所成角的正弦值。

正确答案

(1)

如图,由已知AB⊥平面ACD,DE⊥平面ACD,

∴AB//ED,

设F为线段CE的中点,H是线段CD的中点,

连接FH,则,∴

∴四边形ABFH是平行四边形,

,         

平面ACD内,平面ACD,

平面ACD

(2)取AD中点G,连接CG.

AB平面ACD, 

∴CGAB

又CGAD

∴CG平面ABED,  即CG为四棱锥的高, CG=

=2=

(3)连接EG,由(2)有CG平面ABED,

即为直线CE与平面ABED所成的角,

设为,则在中,

解析

解析已在路上飞奔,马上就到!

知识点

组合几何体的面积、体积问题直线与平面平行的判定与性质直线与平面垂直的判定与性质线面角和二面角的求法
1
题型:简答题
|
简答题 · 14 分

19.如图,四棱锥P﹣ABCD,PA⊥底面ABCD,AB∥CD,AB⊥AD,AB=AD=CD=2,PA=2,E,F分别是PC,PD的中点.

(Ⅰ) 证明:EF∥平面PAB;

(Ⅱ) 求直线AC与平面ABEF所成角的正弦值.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

直线与平面平行的判定与性质直线与平面垂直的判定与性质线面角和二面角的求法
1
题型:简答题
|
简答题 · 12 分

19.如图,在直三棱柱中,,

(1)证明:;

(2)求直线与平面所成角的正切值。

(3)求点A到平面的距离。

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

直线与直线垂直的判定与性质线面角和二面角的求法
1
题型:简答题
|
简答题 · 14 分

17.如图,在四棱柱ABCD﹣A1B1C1D1中,AB=BC=CA=,AD=CD=AA1=1,平面AA1C1C⊥平面ABCD,E为线段BC的中点,

(Ⅰ)求证:BD⊥AA1

(Ⅱ)求证:A1E∥平面DCC1D1

(Ⅲ) 若AA1⊥AC,求A1E与面ACC1A1所成角大小.

正确答案

(Ⅰ)证明:在四棱锥ABCD﹣A1B1C1D1中,

∵AB=BC=CA,且AD=DC,

取AC中点O,则BO⊥AC,DO⊥AC,∴B,O,D三点在一条直线上.

又∵面AA1C1C⊥面ABCD,面AA1C1C∩面ABCD=AC,BD⊂面ABCD,BD⊥AC,

∴BD⊥面AA1C1C,AA1⊂面AA1C1C,∴BD⊥AA1

(Ⅱ)证明:连AE,在Rt△DCO中∠DCO=30°

在正△BCA中,∠BCO=60°,∴DC⊥BC,

又在正△BCA中,AE⊥BC,

∴AE∥DC,

又AE⊄面DCC1D1,DC⊂面DCC1D1,∴AE∥面DCC1D1

在四棱锥中,AA1∥DD1,AA1⊄面DCC1D1,DD1⊂面DCC1D1

∴AA1∥面DCC1D1

又AA1∩AE=A,

∴面A1AE∥面DCC1D1

又A1E⊂面AA1E,故A1E∥面DCC1D1

(Ⅲ)解:过E作AC的垂线,设垂足为N,∵面ABCD⊥面AA1C1C,∴EN⊥面AA1C1C,

连A1N,则A1N为A1E在面AA1C1C内的射影,

∴∠EA1N为直线A1E与面AC1所成角,

由已知得:,∴

解析

解析已在路上飞奔,马上就到!

知识点

直线与平面平行的判定与性质直线与直线垂直的判定与性质平面与平面垂直的判定与性质线面角和二面角的求法
1
题型:简答题
|
简答题 · 12 分

19. 如图,在三棱柱中,面为矩形,的中点,交于点

(1)证明:

(2)若,求直线与面成角的余弦值.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

直线与直线垂直的判定与性质直线与平面垂直的判定与性质线面角和二面角的求法
下一知识点 : 空间直角坐标系
百度题库 > 高考 > 文科数学 > 直线、平面垂直的判定与性质

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题