- 用数学归纳法证明不等式
- 共357题
(1)已知函数f(x)=rx-xr+(1-r)(x>0),其中r为有理数,且0<r<1,求f(x)的最小值;
(2)试用(1)的结果证明如下命题:设a1≥0,a2≥0,b1,b2为正有理数,若b1+b2=1,则≤a1b1+a2b2;
(3)请将(2)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题。注:当α为正有理数时,有求导公式(xα)′=αxα-1 。
正确答案
解:(1)求导函数可得:f′(x)=r(1-xr-1),
令f′(x)=0,解得x=1;
当0<x<1时,f′(x)<0,
所以f(x)在(0,1)上是减函数;
当x>1时,f′(x)>0,
所以f(x)在(0,1)上是增函数
所以f(x)在x=1处取得最小值f(1)=0;
(2)由(1)知,x∈(0,+∞)时,有f(x)≥f(1)=0,即xr≤rx+(1-r)①
若a1,a2中有一个为0,
则≤a1b1+a2b2成立;
若a1,a2均不为0,
∵b1+b2=1,
∴b2=1-b1,
∴①中令,可得
≤a1b1+a2b2成立
综上,对a1≥0,a2≥0,b1,b2为正有理数,
若b1+b2=1,则≤a1b1+a2b2;② 。
(3)(2)中的命题推广到一般形式为:设a1≥0,a2≥0,…,an≥0,b1,b2,…,bn为正有理数,若b1+b2+…+bn=1,则≤a1b1+a2b2+…anbn;③
用数学归纳法证明:
(i)当n=1时,b1=1,a1≤a1,③成立
(ii)假设当n=k时,③成立,即a1≥0,a2≥0,…,ak≥0,b1,b2,…,bk为正有理数,若
b1+b2+…+bk=1,则≤a1b1+a2b2+…akbk当n=k+1时,a1≥0,a2≥0,…,ak+1≥0,b1,b2,…,bk+1为正有理数,
若b1+b2+…+bk+1=1,
则1-bk+1>0
于是=(
)
=
∵
∴≤
=
∴≤
·(1-bk+1)
∴
∴当n=k+1时,③
成立由(i)(ii)可知,对一切正整数,推广的命题成立。
已知函数f(x)是在(0,+∞)上每一点处均可导的函数,若xf'(x)>f(x)在(0,+∞)上恒成立.
(1)①求证:函数在(0,+∞)上是增函数;
②当x1>0,x2>0时,证明:f(x1)+f(x2)<f(x1+x2);
(2)已知不等式ln(x+1)<x在x>﹣1且x≠0时恒成立,求证:…
.
正确答案
解:(1)①∵,
∴
∵xf'(x)>f(x),
∴g'(x)>0在(0,+∞)上恒成立,
从而有在(0,+∞)上是增函数.
②由①知在(0,+∞)上是增函数,
当x1>0,x2>0时,有,
于是有:,
两式相加得:f(x1)+f(x2)<f(x1+x2)
(2)由(1)②可知:f(x1)+f(x2)<f(x1+x2),(x1>0,x2>0)恒成立
由数学归纳法可知:xi>0(i=1,2,3,…,n)时,有:
f(x1)+f(x2)+f(x3)+…+f(xn)<f(x1+x2+x3+…xn)(n≥2)恒成立
设f(x)=xlnx,则,则xi>0(i=1,2,3,…,n)时,
x1lnx1+x2lnx2+…+xnlnxn<(x1+x2+…+xn)ln(x1+x2+…+xn)(n≥2)(*)恒成立
令,记
又,
又,
且ln(x+1)<x
∴(x1+x2+…+xn)ln(x1+x2+…+xn)<(x1+x2+…+xn)ln(1﹣)
<﹣(x1+x2+…+xn)<﹣
(
﹣
)=﹣
(**)
将(**)代入(*)中,可知:
﹣()
于是,
已知m,n为正整数。
(1)用数学归纳法证明:当x>-1时,(1+x)m≥1+mx;
(2)对于n≥6,已知,求证:
,m=1,2…,n;
(3)求出满足等式3n+4n+…+(n+2)n=(n+3)n的所有正整数n。
正确答案
解:(1)用数学归纳法证明:
(i)当时,原不等式成立;
当时,左边
,右边
,
因为,
所以左边≥右边,原不等式成立;
(ii)假设当时,不等式成立,即
,
则当时,
∵,
∴,
于是在不等式两边同乘以
得,
所以
即当时,不等式也成立
综合(i)(ii)知,对一切正整数,不等式都成立。
(2)当时,由(1)得
于是,
。
(3)解:由(2),当时,
,
∴
即
即当时,不存在满足该等式的正整数n
故只需要讨论的情形:
当时,
,等式不成立;
当时,
,等式成立;
当时,
,等式成立;
当时,
为偶数,而
为奇数,
故,等式不成立;
当时,同
的情形可分析出,等式不成立
综上,所求的n只有。
已知数列{an}中,a1=2,an+1=(-1)(an+2),n=1,2,3,…
(Ⅰ)求{an}的通项公式;
(Ⅱ)若数列{bn}中,b1=2,bn+1=,n=1,2,3,…,证明:
<bn≤a4n-3,n=1,2,3,…
正确答案
解:(Ⅰ)由题设:
,
,
所以,数列是首项为
,公比为
的等比数列,
,
即an的通项公式为,n=1,2,3,…;
(Ⅱ)用数学归纳法证明.
(ⅰ)当n=1时,因,所以
,结论成立;
(ⅱ)假设当n=k时,结论成立,即,也即
,
当n=k+1时,
,
又,
所以
,
也就是说,当n=k+1时,结论成立;
根据(ⅰ)和(ⅱ)知,n=1,2,3,…。
已知数列{an},an≥0,a1=0,an+12+an+1-1=an2(n∈N*),记:Sn=a1+a2+…+an,
,求证:当n∈N*时,
(Ⅰ)an<an+1;
(Ⅱ)Sn>n-2;
(Ⅲ)Tn<3。
正确答案
证明:(Ⅰ)用数学归纳法证明.
①当n=1时,因为a2是方程的正根,所以
;
②假设当n=k(k∈N*)时,,
因为,
所以,
即当n=k+1时,也成立.
根据①和②,可知对任何n∈N*都成立;
(Ⅱ)由
得,
因为,所以
,
由,
所以.
(Ⅲ)由,
得,
所以,
于是,
故当n≥3时,,
又因为,
所以。
扫码查看完整答案与解析