- 气体
- 共1086题
下列说法正确的是
正确答案
B C
试题分析:A.绝对零度是热力学的最低温度-274℃,但此为仅存于理论的下限值,物体的温度无限接近绝对零度,不能达到,A错误;
B.液体与大气相接触,分子间距变大,表面层内分子所受其它分子间的作用表现为相互吸引,B正确;
C.单位体积内的分子数越多和温度越高,气体分子单位时间内与单位面积器壁碰撞的次数就越多,选项C正确;
D.气体失去了容器的约束就会散开,这是气体分子热运动的结果,选项D错误;
E.布朗运动是悬浮在液体中固体颗粒的无规则运动的反映,不是固体颗粒的分子的无规则运动,E错误。
点评:掌握各种热学现象的原理是解决此类问题的关键。
已知汞的摩尔质量M=0.20kg/mol,汞蒸气的密度ρ=4kg/m3,将汞蒸气液化后,体积减小为原来的,则1cm3的汞所含的分子数为多少?(已知阿伏伽德罗常数NA=6.0×l023mol-1)
正确答案
解:汞蒸气体积为
的汞所含分子数
计算得个
本题考查气体分子直径的计算,由汞蒸气的摩尔体积和密度,物质的摩尔质量根据计算可得单位体积的分子个数
(12分)(1)随着科技的迅猛发展和人们生活水平的提高,下列问题一定能够实现或完成的是 ( )
(2)某学校研究性学习小组组织开展一次探究活动,想估算地球周围大气层空气的分子个数和早晨同中午相比教室内的空气的变化情况.一学生通过网上搜索,查阅得到以下几个物理量数据:地球的半径R=6.4×106 m,地球表面的重力加速度g=9.8 m/s2,大气压强p0=1.0×105 Pa,空气的平均摩尔质量M=2.9×10-2 kg/mol,阿伏加德罗常数NA=6.0×1023个/mol.另一个同学用温度计测出早晨教室内的温度是7℃,中午教室内的温度是27℃.
①第一位同学根据上述几个物理量能估算出地球周围大气层空气的分子数吗?若能,请说明现由;若不能,也请说明理由.
②根据上述几个物理量能否估算出中午跑到教室外的空气是早晨教室内的空气的几分之几?
正确答案
(1)B、D (2)①能,理由见 ②
(1)可估算需要10万年才能数完,所以A错;热力学第二定律告诉我们B正确;热机是把内能转化为机械能的机器,根据热力学第二定律可知C错;太阳能的开发和利用是人类开发新能源的主要思路,完全可以实现全民普及太阳能,所以D正确.正确的为B、D.
(2)①能.因为大气压强是由大气重力产生的,
由p0==,得m=
把查阅得到的数据代入上式得m≈5.2×1018kg
大气层空气的分子数为
N=NA=×6.0×1023个
≈1.1×1044个
②可认为中午同早晨教室内的压强不变,根据等压变化规律=,
将T1=280 K、T2=300 K,代入得
V2=V1
故跑到室外的空气体积ΔV=V2-V1=V1
所以跑到室外空气占早晨室内的比例为
==.
(11分)由于生态环境的破坏,地表土裸露,大片土地沙漠化,加上春季干旱少雨,所以近年来我国北方地区3、4月份扬尘天气明显增多.特别是2006年的3月26日至28日,由于南下的冷空气所带来的大风,席卷了我国从新疆到沿海的北方大部分地区,出现了罕见的沙尘暴天气.据
环保部门测定,在北京地区沙尘暴严重时,最大风速达到12 m/s,同时大量的微粒在空中悬浮.沙尘暴使空气中的悬浮微粒的最高浓度达到5.8×10-6 kg/m3,悬浮微粒的密度为2.0×103 kg/m3,其中悬浮微粒的直径小于10-7 m的称为“可吸入颗粒物”,对人体的危害最大.北京地区出现上述沙尘暴时,设悬浮微粒中总体积的1/50为可吸入颗粒物,并认为所有可吸入颗粒物的平均直径为5.0×10-8 m,求1.0 cm3的空气中所含可吸入颗粒物的数量是多少?(计算时可把可吸入颗粒物视为球形,计算结果保留1位有效数字)
正确答案
9×105个
出沙尘暴天气时,1 m3的空气中所含悬浮微粒的总体积为
V==
m3=2.9×10-9 m3
那么1 m3中所含的可吸入颗粒物的体积为
V′==5.8×10-11 m3
又因为每一个可吸入颗粒物的体积为
V0=πd3≈6.54×10-23 m3
所以1 m3中所含的可吸入颗粒物的数量
N=≈8.9×1011个
所以1.0 cm3的空气中所含可吸入颗粒物的数量为
N′=N×1.0×10-6=8.9×105个≈9×105个.
某同学为测量地表植物吸收太阳能的本领,做了如下实验:用一面积为0.1 m2的面盆盛6 kg的水,经太阳垂直照射15 min,温度升高5℃,若地表植物每秒吸收太阳能的能力与水相等,试计算:
(1)每平方米绿色植物每秒吸收的太阳能为多少焦耳?
(2)若绿色植物在光合作用下每吸收1 kJ的太阳能可放出0.05 L的氧气,则每公顷绿地每秒可放出多少升的氧气?[1公顷=104 m2,水的比热容c=4.2×103 J/(kg·℃)]
正确答案
(1)1.4×103 J (2)700 L
(1)单位面积单位时间吸收的太阳能为
W==
J=1.4×103 J
(2)氧气的体积为
V=×0.05 L=700 L.
[物理一一选修3-3](15分)
小题1:在下列关于气体的描述正确的是 ( )
小题2:有一传热良好的圆柱形气缸置于水平地面上,并用一光滑的质量为M活塞密封一定质量的的理想气体,活塞面积为S。开始时汽缸开口向上(如图一),已知外界大气压强P0,被封气体的体积V0。
①求被封气体的压强:
②现将汽缸倒置(如图二),待系统重新稳定后,活塞移动的距离是多少?
正确答案
小题1:AD
小题2:
所以
(8分) (1)如图所示,把一块洁净的玻璃板吊在橡皮筋下端,使玻璃板水平接触水面.如果你想使玻璃板离开水面,必须用比玻璃板重力________的拉力向上拉橡皮筋,原因是水分子和玻璃的分子间存在____________作用.
(2)往一杯清水中滴入一滴红墨水,过一段时间后,整杯水都变成了红色,这一现象在物理学中称为__________现象,是由于分子的____________而产生的。
正确答案
(1)大 ,引力 (2)扩散,无规则运动.
试题分析:(1)当玻璃板与水面接触时,玻璃板与水分子之间存在作用力,当用力向上拉时,水分子之间要发生断裂,还要克服水分子间的作用力,所以拉力比玻璃板的重力要大,反映出水分子和玻璃的分子间存在引力作用。
(2)往一杯清水中滴入一滴红墨水,一段时间后,整杯水都变成了红色,这种不同物质彼此进入对方的现象,称为扩散现象,是由分子的无规则运动产生的。
在“油膜法估测油酸分子的大小”试验中,有下列实验步骤:
①往边长约为40cm的浅盆里倒入约2cm深的水,待水面稳定后将适量的痱子粉均匀地撒在水面上。
②用注射器将事先配好的油酸酒精溶液滴一滴在水面上,待薄膜形状稳定。
③将画有油膜形状的玻璃板平放在坐标纸上,计算出油膜的面积,根据油酸的体积和面积计算出油酸分子直径的大小。
④用注射器将事先配好的油酸酒精溶液一滴一滴的滴入量筒中,记下量筒内每增加一定体积时的滴数,由此计算出一滴油酸酒精溶液的体积。
⑤将玻璃板放在浅盘上,然后将油膜的形状用彩笔描绘在玻璃板上。
完成下列填空:
(1)上述步骤中,正确的顺序是 。(填写步骤前面的数字)
(2)1cm3的油酸溶于酒精,制成300cm3的油酸酒精溶液;测得1cm3的油酸酒精溶液有50滴。现取一滴该油酸酒精溶液滴在水面上,测得所形成的油膜的面积是0.13m2。由此估算出油酸分子的直径为 m。(结果保留1位有效数字)
正确答案
④①②⑤③ 5×10-10
(1)略(2)分子油膜形成了单分子直径的圆柱体形状,圆柱体的高度就是直径,所以直径为5×10-10 m
观察布朗运动时,下列说法正确的是( )
正确答案
AB
液体分子不停地做无规则的运动,不断地撞击微粒,当液体温度升高时,液体分子的运动速度就大,因而对微粒的碰撞作用就强,布朗运动就越明显.另外,微粒的大小对布朗运动的激烈程度也有影响,当微粒很小时,在某一瞬间跟它碰撞的分子个数就少,撞击作用的不平衡性表现得越明显,布朗运动也就越明显;微粒较大时,在某一瞬间跟它碰撞的分子个数就多,撞击作用的不平衡性表现得越不明显,可以认为撞击作用几乎平衡,因而布朗运动就不明显,甚至观察不到.由此可以判断选项A、B是正确的.
晶须是一种发展中的高强度材料,它是一些非常细的,非常完整的丝状(横截面为圆形)晶体,现有一根铁晶,直径d="1.60" μm,用了F="0.0264" N的力将它拉断,试估算拉断过程
中最大的Fe原子力Ff.(Fe的密度ρ="7.92" g·cm-3).
正确答案
8.25×10-10 N
估算最大铁原子力,最关键之处就是要将已知的宏观量与待求的微观量如何相联系,这就要想到阿伏加德罗常数.
因原子力作用范围在10-10 m数量级,阻止拉断的原子力主要来自于断开面上的所有原子对.当Fe晶上的拉力分摊到一对Fe原子上的力超过拉伸中的最大原子力时,Fe晶就被拉断.又铁的摩尔质量
MA=55.85×10-3 kg/mol.
所以铁原子的体积:
V= m3
=1.171×10-29 m3
原子直径D=2.82×10-10 m
原子球的大圆面积S=πD2/4=6.25×10-20 m2
铁晶断面面积
S′=πd2/4=π×(1.60×10-6)2/4 m2=2.01×10-12 m2
断面上排列的铁原子数
N==3.2×107个
所以拉断过程中最大铁原子力
Ff= N=8.25×10-10 N.
扫码查看完整答案与解析