- 圆锥曲线性质的探讨
- 共2238题
如图,一个底面半径为R的圆柱被与其底面所成角为θ(0°<θ<90°)的平面所截,截面是一个椭圆,
当θ为30°时,这个椭圆的离心率为______.
正确答案
解析
解:因为底面半径为R的圆柱被与底面成30°的平面所截,其截口是一个椭圆,
则这个椭圆的短半轴为:R,长半轴为:,
∵a2=b2+c2,∴c=,
∴椭圆的离心率为:e==
.
故答案为:.
如图,已知底面半径为r的圆柱被一个平面所截,剩下部分母线长的最大值为a,最小值为b,那么圆柱被截后剩下部分的体积是______.
正确答案
πr2(a+b)
解析
解:取两个相同的几何体,倒立一个,对应合缝,恰好形成一个圆柱体.
所求几何体的体积:=
故答案为:
如图,圆柱的轴截面ABCD是正方形,点E在底面的圆周上,AF⊥DE,F是垂足.
(1)求证:AF⊥DB;
(2)如果圆柱与三棱锥D-ABE的体积的比等于3π,求直线DE与平面ABCD所成的角.
正确答案
(1)证明:根据圆柱性质,DA⊥平面ABE.
∵EB⊂平面ABE,
∴DA⊥EB.
∵AB是圆柱底面的直径,点E在圆周上,
∴AE⊥EB,又AE∩AD=A,
故得EB⊥平面DAE.
∵AF⊂平面DAE,
∴EB⊥AF.
又AF⊥DE,且EB∩DE=E,
故得AF⊥平面DEB.
∵DB⊂平面DEB,
∴AF⊥DB.
(2)解:过点E作EH⊥AB,H是垂足,连接DH.
根据圆柱性质,平面ABCD⊥平面ABE,AB是交线.且EH⊂平面ABE,所以EH⊥平面ABCD.
又DH⊂平面ABCD,所以DH是ED在平面ABCD上的射影,从而∠EDH是DE与平面ABCD所成的角.
设圆柱的底面半径为R,则DA=AB=2R,于是
V圆柱=2πR3,.
由V圆柱:VD-ABE=3π,得EH=R,可知H是圆柱底面的圆心,
AH=R,
DH=
∴∠EDH=arctan=arctan(
).
解析
(1)证明:根据圆柱性质,DA⊥平面ABE.
∵EB⊂平面ABE,
∴DA⊥EB.
∵AB是圆柱底面的直径,点E在圆周上,
∴AE⊥EB,又AE∩AD=A,
故得EB⊥平面DAE.
∵AF⊂平面DAE,
∴EB⊥AF.
又AF⊥DE,且EB∩DE=E,
故得AF⊥平面DEB.
∵DB⊂平面DEB,
∴AF⊥DB.
(2)解:过点E作EH⊥AB,H是垂足,连接DH.
根据圆柱性质,平面ABCD⊥平面ABE,AB是交线.且EH⊂平面ABE,所以EH⊥平面ABCD.
又DH⊂平面ABCD,所以DH是ED在平面ABCD上的射影,从而∠EDH是DE与平面ABCD所成的角.
设圆柱的底面半径为R,则DA=AB=2R,于是
V圆柱=2πR3,.
由V圆柱:VD-ABE=3π,得EH=R,可知H是圆柱底面的圆心,
AH=R,
DH=
∴∠EDH=arctan=arctan(
).
一平面截球面产生的截面形状是______;它截圆柱面所产生的截面形状是______.
正确答案
圆
圆或椭圆
解析
解:根据球的几何特征,
一平面截球面产生的截面形状是圆;
当平面与圆柱的底面平行时,
截圆柱面所产生的截面形状为圆;
当平面与圆柱的底面不平行时,
截圆柱面所产生的截面形状为椭圆;
故答案为:圆,圆或椭圆
工人师傅在如图1的一块矩形铁皮的中间画了一条曲线,并沿曲线剪开,将所得的两部分卷成圆柱状,如图2,然后将其对接,可做成一个直角的“拐脖”,如图3.对工人师傅所画的曲线,有如下说法:
(1)是一段抛物线;
(2)是一段双曲线;
(3)是一段正弦曲线;
(4)是一段余弦曲线;
(5)是一段圆弧.
则正确的说法序号是______.
正确答案
③④
解析
解:将图2剪开展成平面图分析可知,曲线为轴对称图形,将图3剪开展成平面图分析可知,曲线也为中心对称图形.所以此曲线即为轴对称图形又为中心对称图形,故只有③④正确.
故答案为:③④.
用与底面成45°角的平面截圆柱得一椭圆截线,则该椭圆的离心率为 ______.
正确答案
解析
解:设圆柱方程为x 2+y 2=R 2,
∵与底面成45°角的平面截圆柱,
∴椭圆的长轴长是R,
短轴长是R,
∴c=R,
∴e==
故答案为:
在底面半径为6的圆柱内,有两个半径也为6的球面,两球的球心距为13,若作一个平面与两个球都相切,且与圆柱面相交成一椭圆,则椭圆的长轴长为______.
正确答案
13
解析
解:设两个球的球心分别为O1、O2,所得椭圆的长轴为AB,
直线AB与O1O2交于点E,设它们确定平面α,
作出平面α与两个球及圆柱的截面,如图所示
过A作O1O2的垂线,交圆柱的母线于点C,设AB切球O1的大圆于点D,连接O1D
∵Rt△O1DE中,O1E=O1O2=
,O1D=6
∴cos∠DO1E==
∵锐角∠DO1E与∠BAC的两边对应互相垂直
∴∠BAC=∠DO1E,
得Rt△ABC中,cos∠BAC==
∵AC长等于球O1的直径,得AC=12
∴椭圆的长轴AB=13
故答案为:13
一个圆柱形容器里装有水,放在水平面上,现将容器倾斜,这时水面是一个椭圆,当圆柱的母线AB与地面所成角
时,椭圆的离心率是多少?
正确答案
解:由题意,椭圆的短轴长为圆柱的直径,椭圆的长轴、圆柱底面的直径和母线三者组成一个直角三角形,且长轴与直径的夹角为.
∴b=r,a=2r,c=r,
∴离心率e==
.
解析
解:由题意,椭圆的短轴长为圆柱的直径,椭圆的长轴、圆柱底面的直径和母线三者组成一个直角三角形,且长轴与直径的夹角为.
∴b=r,a=2r,c=r,
∴离心率e==
.
工人师傅在如图1的一块矩形铁皮上画一条曲线,沿曲线剪开,将所得到的两部分卷成圆柱状,如图2,然后将其对接,可做成一个直角的“拐脖”,如图3.工人师傅所画的曲线是( )
正确答案
解析
解:将图2剪开展成平面图分析可知,曲线为轴对称图形,将图3剪开展成平面图分析可知,曲线也为中心对称图形.所以此曲线即为轴对称图形又为中心对称图形,故只有D正确.
故选:D.
已知圆柱的底面半径为2,高为3,用一个与底面不平行的平面去截,若所截得的截面为椭圆,则椭圆的离心率的最大值为( )
正确答案
解析
解:如图所示,;
当椭圆的长轴AB==5,
短轴CD=2×2=4时,离心率最大,
最大值为e==
=
.
故选:B.
如图,P是O外一点,PA是切线,A为切点,割线PBC与
O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交
O于点E。
证明:(1)BE=EC;
(2)ADDE=2
正确答案
(1)见解析 (2)见解析
试题分析:本题第(1)问,先由已知得出PA=PD,然后由对应角相等,拆分角得出结论;对第(2)问,可由切割线定理得出,
,
然后由相交弦定理,得出结论.
试题解析:(1)连结AB,AC,由题意知PA=PD,故,因为
,
,
,所以
,从而
,因此BE=EC.
(2)由切割线定理得:,因为
,所以
,
,
由相交弦定理得:=
=
=,所以等式成立.
【易错点】对第(1)问,不容易找到思路;第(2)问中不会灵活应用已知条件而出错.
如图所示,AD、CE是△ABC中边BC、AB的高,AD和CE相交于点F.
求证:AF·FD=CF·FE.
正确答案
见解析
证明 因为AD⊥BC,CE⊥AB,
所以△AFE和△CFD都是直角三角形.
又因为∠AFE=∠CFD,所以Rt△AFE∽Rt△CFD.
所以AF∶FE=CF∶FD.
所以AF·FD=CF·FE.
如图,圆的直径
,
是
延长线上一点,
,割线
交圆
于点
,
,过点
作
的垂线,交直线
于点
,交直线
于点
.
(1)求证:;
(2)求的值.
正确答案
(1)证明见解析;(2)24.
试题分析:
解题思路:(1)利用四点共圆的性质得出两角线段;(2)利用三角形相似和圆内接四边形的性质进行求解.
规律总结:直线与圆的位置关系,是平面几何问题的常见题型,常考知识由:圆内接四边形、切割线定理、相似三角形、全等三角形等.
试题解析:解法1:(1)连接,则
,
即、
、
、
四点共圆.
∴.
又、
、
、
四点共圆,∴
∴.
∵,
(2)∴、
、
、
四点共圆,
∴,又
,
.
解法2:(1)连接,则
,又
∴,
∵,∴
.
(2)∵,
,
∴∽
,∴
,
即,
又∵,
∴.
如图,不等边内接于⊙O,
是其内心,且
.若
,则
.
正确答案
5
略
如图,M是平行四边形ABCD的边AB的中点,直线l过点M分别交AD,AC于点E,F,交CB的延长线于点N.若AE=2,AD=6,则=________.
正确答案
∵AD∥BC,∴△AEF∽△CNF,∴=
,
∴=
.
∵M为AB的中点,∴=
=1,
∴AE=BN,∴=
=
=
.
∵AE=2,BC=AD=6,∴=
=
.
扫码查看完整答案与解析