- 相似三角形的判定及有关性质
- 共439题
(2015秋•邯郸校级月考)如图:Rt△ABC中,∠ABC=90°,AB=BC.以AB为直径的⊙O交OC于D,AD的延长线交BC于E,过点D作⊙O的切线DF交BC于F,连OF.⊙C切⊙O于点D,交BC于G.
(1)求证:OF∥AE.
(2)求的值.
正确答案
(1)证明:
∵DF为⊙O的切线,
∴OD⊥DF,
∴∠FDO=90°
又∵∠ABC=90°,OD=OB,OF=OF,
∴在RT△OFD和RT△OFB中,OD=OB,OF=OF,
∴RT△OFD≌RT△OFB(HL),
∴∠FOD=∠FOB,
∵OA=OD,
∴∠OAD=∠ODA,
又∵∠BOD=∠OAD+∠ODA=2∠OAD,
∴∠FOB=∠OAD,
∴OF∥AE.
(2)解:连接BD交OF于H,
∵AB是直径,
∴BD⊥AE,
∴∠BDE=90°,
∵∠BAD=∠EAB,
∴△ABD∽△ABE,
∴AB2=AE•AD,
同理可证△BDE∽△ABE,
∴BE2=DE•AE,
∵∠FCD=∠OCB,∠CDF=∠CBO=90°,
∴△CDF∽△CBO,
∴DF:CD=OB:BC=1:2,
∴DF=CD=
R,
∵BC是⊙O的切线,
∴DF=BF,
∴DF是△BDE的中线,
∴BE=2DF=(-1)R,
∴DE:AD=BE2:AB2=.
解析
(1)证明:
∵DF为⊙O的切线,
∴OD⊥DF,
∴∠FDO=90°
又∵∠ABC=90°,OD=OB,OF=OF,
∴在RT△OFD和RT△OFB中,OD=OB,OF=OF,
∴RT△OFD≌RT△OFB(HL),
∴∠FOD=∠FOB,
∵OA=OD,
∴∠OAD=∠ODA,
又∵∠BOD=∠OAD+∠ODA=2∠OAD,
∴∠FOB=∠OAD,
∴OF∥AE.
(2)解:连接BD交OF于H,
∵AB是直径,
∴BD⊥AE,
∴∠BDE=90°,
∵∠BAD=∠EAB,
∴△ABD∽△ABE,
∴AB2=AE•AD,
同理可证△BDE∽△ABE,
∴BE2=DE•AE,
∵∠FCD=∠OCB,∠CDF=∠CBO=90°,
∴△CDF∽△CBO,
∴DF:CD=OB:BC=1:2,
∴DF=CD=
R,
∵BC是⊙O的切线,
∴DF=BF,
∴DF是△BDE的中线,
∴BE=2DF=(-1)R,
∴DE:AD=BE2:AB2=.
已知:如图,⊙O与⊙P相交于A,B两点,点P在⊙O上,⊙O的弦BC切⊙P于点B,CP及其延长线交⊙P于D,E两点,过点E作EF⊥DE交CB延长线于点F.若
,求EF的长.
正确答案
解:设⊙P 的半径为 r,Rt△CBP中,由勾股定理得 8+r2=(2+r)2,
∴r=1. 由Rt△CBP和R t△CEF相似可得 =
,即
=
,
∴.
解析
解:设⊙P 的半径为 r,Rt△CBP中,由勾股定理得 8+r2=(2+r)2,
∴r=1. 由Rt△CBP和R t△CEF相似可得 =
,即
=
,
∴.
(几何证明选讲选选做题)如图,圆的两条弦AC、BD相交于P,弧AB、BC、CD、DA的度数分别为60°、105°、90°、105°,则
=______.
正确答案
解析
解:连接AB,CD
∵弧AB、CD、的度数分别为60°、90°,
∴弦AB的长度等于半径,弦CD的长度等于半径的倍,
即,
∵∠A=∠D,∠C=∠B,
∴△ABP∽△CDP
∴
∴,
故答案为:
如图,在△ABC中,AB=AC=3,BC=2,∠ABC的平分线交BC的平行线于点D,则△ABD的面积为( )
正确答案
解析
解:∵AB=AC=3,BC=2,∠ABC的平分线交BC的平行线于点D,
∴AD=AB=3,
∵BC上的高为=2
,
∴AD上的高为2,
∴△ABD的面积为=3
,
故选:A.
如图,AB、CD是圆的两条平行弦,BE∥AC,BE交CD于E、交圆于F,过A点的切线交DC的延长线于P,PC=ED=1,PA=2.
(Ⅰ)求AC的长;
(Ⅱ)试比较BE与EF的长度关系.
正确答案
解:(I)∵过A点的切线交DC的延长线于P,
∴PA2=PC•PD,
∵PC=1,PA=2,
∴PD=4
又PC=ED=1,∴CE=2,
∵∠PAC=∠CBA,∠PCA=∠CAB,
∴△PAC∽△CBA,
∴,
∴AC2=PC•AB=2,
∴AC=; …(5分)
(II),
由相交弦定理可得CE•ED=BE•EF.
∵CE=2,ED=1,
∴EF=,
∴EF=BE.…(10分)
解析
解:(I)∵过A点的切线交DC的延长线于P,
∴PA2=PC•PD,
∵PC=1,PA=2,
∴PD=4
又PC=ED=1,∴CE=2,
∵∠PAC=∠CBA,∠PCA=∠CAB,
∴△PAC∽△CBA,
∴,
∴AC2=PC•AB=2,
∴AC=; …(5分)
(II),
由相交弦定理可得CE•ED=BE•EF.
∵CE=2,ED=1,
∴EF=,
∴EF=BE.…(10分)
扫码查看完整答案与解析