- 选学内容
- 共303题
如图,O和O′相交于A,B两点,过A作两圆的切线分别交两圆于C,D两点,连结DB并延长交O于点E,证明:
(1)AC·BD=AD·AB;
(2)AC=AE。
正确答案
见解析
解析
证明:(1)由AC与O′相切于A,得∠CAB=∠ADB,
同理∠ACB=∠DAB,
所以△ACB∽△DAB。
从而,即AC·BD=AD·AB。
(2)由AD与O相切于A,得∠AED=∠BAD,
又∠ADE=∠BDA,得△EAD∽△ABD。
从而,即AE·BD=AD·AB。
结合(1)的结论,AC=AE
知识点
如图,正方形的边长为,延长至,使,连接、则( )
正确答案
解析
知识点
如图3,是圆的切线,切点为,直线与圆交于
, 两点,的平分线分别交弦,于,
两点,已知,,则的值为 。
正确答案
解析
略
知识点
在△中,是边的中点,点在线段上,且满足,延长交于点,则的值为 ,
正确答案
解析
略
知识点
如图,半径为2的⊙O中,,为的中点,的延长线交⊙O于点,则线段的长为_______.
正确答案
解析
略
知识点
如图,已知△ABC内接于⊙O,点D在OC的延长线上,AD切⊙O于A,若∠ABC=30°,AC=2,则AD的长为 。
正确答案
解析
∵OA=OC,∠AOC=60°,
∴△AOC是等边三角形,
∴OA=AC=2,
∵∠OAD=90°,∠D=30°,
∴AD=•AO=。
故答案为:。
知识点
如图3,在中,,,,、为垂足,若AE=4,BE=1,则AC= ▲ .
正确答案
10
解析
略
知识点
如图所示,是圆的直径,,,,则 。
正确答案
解析
连结,则在和中:,
且,所以,故。
知识点
从下列题中选答1题。
22.(几何证明选讲)
如图,AD是⊙O的直径,AB是⊙O的切线,M, N是圆上两点,直线MN交AD的延长线于点C,交⊙O的切线于B,BM=MN=NC=1,求AB的长和⊙O的半径.
23.(极坐标和参数方程)
以直角坐标系原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位.已知直线l的参数方程为 (t为参数,0<α<π).曲线C的极坐标方程为ρ=.
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)设直线l与曲线C相交于A、B两点,当α变化时,求|AB|的最小值.
24.(不等式选讲)
设函数 >1),且的最小值为,若,求的取值范围。
正确答案
22.
23.
24.
解析
解析已在路上飞奔,马上就到!
知识点
22.选修4一l:几何证明选讲
如图,已知AP是圆O的切线,P为切点,AC是圆O的割线,与圆O交于B,C两点,圆心O在的内部,点M是BC的中点.
(Ⅰ)证明A,P,O,M四点共圆;
(Ⅱ)求的大小。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
如图3,PAB、PCD为⊙O的两条割线,若PA=5,AB=7,CD=11,,则BD等于
正确答案
6
解析
由割线定理得PA·PB=PC·PD,∴5×(5+7)=PC(PC+11).∴PC=4或PC=-15(舍去)。
又∵PA·PB=PC·PD,,∠P=∠P,∴△PAC∽△PDB.∴.
故
知识点
如图⊙O的直径AB=6cm,P是AB延长线上的一点,过P点作⊙O的切线,切点为C,连接AC,且∠CPA=30°,则BP= cm。
正确答案
3
解析
连接OC,∵CP与⊙O相切于点C,∴OC⊥CP。
∵OC=3,∠CPA=30°,∴==6。
∴BP=OP﹣OB=6﹣3=3。
故答案为3。
知识点
如图,是圆的直径,是圆上的点,,,,则的值为 。
正确答案
解析
设,建立如图所示坐标系,则,,故
知识点
如图,是圆的直径,是圆上的点,,,,则的值为 。
正确答案
解析
设,建立如图所示坐标系,则,
,,故。
知识点
如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F。
(1)求证:DE是⊙O的切线;
(2)若的值.
正确答案
见解析
解析
(1)证明:连结OD,可得∠ODA=∠OAD=∠DAC …………………2分
∴OD//AE 又AE⊥DE …………………………………3分
∴OE⊥OD,又OD为半径
∴DE是的⊙O切线 ………………………5分
(2)解:过D作DH⊥AB于H,
则有∠DOH=∠CAB
…………6分
设OD=5x,则AB=10x,OH=2x,
由△AED≌△AHD可得AE=AH=7x ……………8分
又由△AEF∽△DOF 可得
……………………………………………………10分
知识点
扫码查看完整答案与解析