- 选学内容
- 共303题
22.请考生在22~24题中任选一题作答,如果多做,则按所做的第一题计分。
选修4—1:几何证明选讲
如图,⊙O中的中点为P,弦PC,PD分别交AB于E,F两点。
(Ⅰ)若∠PFB=2∠PCD,求∠PCD的大小;
(Ⅱ)若EC的垂直平分线与FD的垂直平分线交于点G,证明OG⊥CD。
选修4—4:坐标系与参数方程
在直线坐标系xoy中,曲线C1的参数方程为(为参数)。以坐标原点为极点,以x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin()=.
(I)写出C1的普通方程和C2的直角坐标方程;
(II)设点P在C1上,点Q在C2上,求∣PQ∣的最小值及此时P的直角坐标.
选修4—5:不等式选讲
已知函数f(x)=∣2x-a∣+a.
(I)当a=2时,求不等式f(x) ≤6的解集;
(II)设函数g(x)=∣2x-1∣.当x∈R时,f(x)+ g(x) ≥3,求a的取值范围。
正确答案
(Ⅰ)连结,则.
因为,所以,又,所以.
又,所以, 因此.
(Ⅱ)因为,学科.网所以,由此知四点共圆,其圆心既在的垂直平分线上,又在的垂直平分线上,故就是过四点的圆的圆心,所以在的垂直平分线上,因此.
(本小题满分10分)选修4-4:坐标系与参数方程
(Ⅰ)的普通方程为,的直角坐标方程为. ……5分
(Ⅱ)由题意,可设点的直角坐标为,因为是直线,所以的最小值,
即为到的距离的最小值,.
………………8分
当且仅当时,取得最小值,最小值为,此时的直角坐标为. ………………10分
(本小题满分10分)选修4-5:不等式选讲
(Ⅰ)当时,.
解不等式,得.
因此,的解集为. ………………5分
(Ⅱ)当时,
,
当时等号成立,
所以当时,等价于. ① ……7分
当时,①等价于,无解.
当时,①等价于,解得.
所以的取值范围是. ………………10分
知识点
9. 在的二项展开式中,所有项的二项式系数之和为256,则常数项等于____.
正确答案
112
知识点
22.如图(8),圆O1与圆O2相交于A、B两点,AB是圆O2的直径,过A点作圆O1的切线交圆O2于点E,并与BO1的延长线交于点P,PB分别与圆O1、圆O2交于C,D两点.
(Ⅰ)求证:PA·PD=PE·PC;
(Ⅱ)求证:AD=AE.
正确答案
(1)见解析;(2)见解析
解析
试题分析:本题属于几何证明选讲中的证明问题,
(1)由切割线定理直接证明;(2)直接按照步骤来求。
(1) 分别是⊙O2的割线,
①
又分别是⊙O1的切线与割线,
②
由①,②得
(2)连接AC,DE, ⊙O1的直径,
由(1)知,
AB是⊙O2的直径,
考查方向
解题思路
本题考查几何证明选讲中的证明问题,解题步骤如下:
(1)由切割线定理直接证明;
(2)直接按照步骤来求。
易错点
图形看不懂,比较复杂。
知识点
22. 如图,在中,于,于,交于点,若.
(Ⅰ)求证:;
(Ⅱ)求线段的长度.
正确答案
(1)见解析;(2)。
解析
试题分析:本题属于几何证明选讲的问题,
(1)由割线定理求解(2)由割线定理求解.
(Ⅰ)证明:由已知,所以在以为直径的圆上,由割线定理知:
(Ⅱ)解:如图,过点作于点,由已知,又因为,所以四点共圆,所以由割线定理知: ,① 同理四点共圆,由割线定理知:② ①+②得
即
所以
考查方向
解题思路
本题考查几何证明选讲的问题,解题步骤如下:
由割线定理求解。用割线定理来解决。
易错点
不会利用切割线定理来解答。
知识点
22.如图所示,为圆的切线,为切点,交圆于,两点,,,的角平分线与和圆分别交于点和.
(1)求证:;
(2)求的值.
正确答案
(1)见解析;(2)
解析
试题分析:本题属于几何证明选讲问题,(1)利用三角形相似来证明;(2)利用切割线定理然后利用三角形相似来解答。
试题解析:(Ⅰ)∵ 为圆的切线, 又为公共角,
∴ ,∴
(2)∵为圆的切线,是过点的割线, 又∵
又由(Ⅰ)知,
连接,则 ,
∴
考查方向
解题思路
本题考几何证明选讲问题,解题步骤如下:(1)利用三角形相似来证明;(2)利用切割线定理然后利用三角形相似来解答。
易错点
不会转化。
知识点
如图,是圆切线,是切点, 割线是圆的直径,交于,,,.
28.求线段的长;
29.求证:.
正确答案
3
解析
试题分析:本题属于几何证明选讲的问题,(1)考查切割线定理,(2)相似三角形的判定。
因为是圆直径
所以, ,又,,
所以,
又可知,所以
根据切割线定理得: ,
即
考查方向
解题思路
(1)根据切割线定理可以解出,
(2)利用三角形相似对应边成比例。
易错点
不知道切割线定理使用。
正确答案
见详解.
解析
试题分析:本题属于几何证明选讲的问题,(1)考查切割线定理,(2)相似三角形的判定。
过作于,
则, 从而有,
又由题意知所以,
因此,即
考查方向
解题思路
(1)根据切割线定理可以解出,
(2)利用三角形相似对应边成比例。
易错点
不知道切割线定理使用。
如图,A、B是单位圆O上的动点,C是圆与x轴正
半轴的交点,设。
(1)当点A的坐标为时,求的值;
(2)若,且当点A、B在圆上沿逆时针方向
移动时,总有,试求BC的取值范围。
正确答案
见解析。
解析
(1)因为点的坐标为,根据三角函数定义可知
,,,所以.
(2)因为,, 所以.
由余弦定理得
.
因为,所以,所以.
于是, 即,亦即.
故BC的取值范围是.
知识点
如图(3)示,是半圆周上的两个三等分点,直径,,垂足为,与相交于点,则的长为 。
正确答案
解析
依题意知,则AD=2,过点D作DG于G,则AG=BE=1,所以.
知识点
如图,已知圆上的AC=BD,过点的圆的切线与的延长线交于点。
(1)证明:;
(2)若,求的长.
正确答案
见解析。
解析
(1)证明:因为AC=BD,所以∠ABC=∠BCD。
又为圆的切线,。
(2)为圆的切线,∴,
由(1)可得
∴△∽△,∴,∴=3
知识点
如图,在Rt△ABC中,∠C=90°, BE平分∠ABC交AC于点E,点D在线段AB上,DE⊥EB
(1)求证:AC是△BDE的外接圆的切线;
(2)若 ,求EC的长。
正确答案
见解析。
解析
(1)设线段的中点为,连接,
点是圆心,
所以AC是△BDE的外接圆的切线。
(2)由(1)知AC是圆O的切线
.
又由(1)知.
.
知识点
22.如图,在直角中,,为边上异于的一点,以为直径作,分别交于点.
(Ⅰ)证明:四点共圆;
(Ⅱ)若为中点,且,求的长.
正确答案
(Ⅰ)略
(Ⅱ)
解析
试题分析:本题是有关直线与圆的问题,难度不大。在解题中注意结合切线的性质和勾股定理等知识进行解决。
(Ⅰ)连结,则,
因为为直径,所以,
因为,所以,
所以,
所以四点共圆.
(Ⅱ)由已知为的切线,所以,故,
所以,
因为为中点,所以.
因为四点共圆,所以,
所以.
考查方向
解题思路
本题主要考查圆的基本性质、圆周角定理等基础知识。
解题步骤如下:利用四点共圆的判定定理,证明四点共圆;利用切线性质和勾股定理及第一问的结论,求出的长。
易错点
第二问计算中,不易想到利用第一问四点共圆的性质解决。
知识点
22.选修4-1:几何证明选讲
如图,点在圆上,、的延长线交于点,交于点,.
(1)证明:弧弧;
(2)若,求的长.
正确答案
(1)见解析;(2).
解析
试题分析:本题属于圆的综合应用问题,属于简单题,只要掌握相关圆的知识,即可解决本题,解析如下:
(Ⅰ)证明:∵
∴
∵
∴
∵,
∴,又
∴
∴
∴.
(Ⅱ)由(Ⅰ)知,又
∴
∴
又∵,,
∴.
考查方向
解题思路
(1)利用圆的割线的性质及角的关系即可得证;
(2)利用三角形司相似即可求DF的长.
易错点
相关定理不熟悉导致本题失分。
知识点
22.选修4-1:几何证明选讲
如图,已知:是以为直径的半圆上一点,⊥于点,直线与过点的切线相交于点[来,为中点,连接交于点,
(Ⅰ)求证:∠BCF=∠CAB ;
(Ⅱ)若FB=FE=1,求⊙O的半径.
正确答案
(1)略
(2)
解析
(Ⅰ)证明:因为AB是直径,
所以∠ACB=90°
又因为F是BD中点,所以∠BCF=∠CBF=90°-∠CBA=∠CAB
因此∠BCF=∠CAB
(Ⅱ)解:直线CF交直线AB于点G,
由FC=FB=FE得:∠FCE=∠FEC
可证得:与全等,所以 FA=FG,
且AB=BG
由切割线定理得:(1+FG)2=BG×AG=2BG2 ……①
在Rt△BGF中,由勾股定理得:BG2=FG2-BF2 ……②
由①、②得:FG2-2FG-3=0
解之得:FG1=3,FG2=-1(舍去)
所以AB=BG=
所以⊙O半径为.
考查方向
解题思路
第一问:由已知条件得FC=FB=FE得到∠BCF=∠CBF=∠CAB
第二问:由FC=FB=FE得:∠FCE=∠FEC,继而证得:与全等,得到FA=FG,由切割线定理得:(1+FG)2=BG×AG=2BG2 再由勾再由股定理得:BG2=FG2-BF2,,然后求出FG
易错点
1、第一问想到弦切角定理,进而向证明CF与圆相切,虽然可以证明,但是,但是过程稍烦一些。 2、第二问没有注意题中的已知条件,而运用导致无法计算
知识点
如图所示,圆的直径,为圆周上一点,,过作圆的切线,则点到直线的距离___________.
正确答案
解析
略
知识点
如图所示,AC和AB分别是
圆O的切线,B、C为切点,且OC=3,AB=4,延长AO到D
点,则△ABD的面积是_______ ____.
正确答案
解析
略
知识点
扫码查看完整答案与解析