热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题

已知为第二象限角,且tan =﹣,求的值.

正确答案

解:=﹣,且为第二象限,

=

==

=﹣

1
题型:简答题
|
简答题

已知α∈(0,),β∈(,π),cos2β=-,sin(α+β)=

(1)求cosβ的值;

(2)求sinα的值.

正确答案

解:(1)因为,cosβ<0

所以

(2)根据(1),得

,且

所以

故sinα=sin[(α+β)﹣β]=sin(α+β)cosβ﹣cos(α+β)sinβ

          =

1
题型:填空题
|
填空题

已知α为第四象限的角,cosα=,则tan(π+2α)=(    )。

正确答案

1
题型:填空题
|
填空题

已知sinα+sinβ+sin91°=0,cosα+cosβ+cos91°=0,则cos(α-β)=(    )。

正确答案

1
题型:填空题
|
填空题

已知,那么cos2x=(    )。

正确答案

1
题型:填空题
|
填空题

已知,则sinα(    )

正确答案

1
题型:填空题
|
填空题

已知α为第二象限的角,sinα=,则tan2α=(    )。

正确答案

1
题型:填空题
|
填空题

已知,则=(    )。

正确答案

1
题型:填空题
|
填空题

,则(    )。

正确答案

2005

1
题型:填空题
|
填空题

已知,其中,则=(    )。

正确答案

1
题型:简答题
|
简答题

在△ABC中,内角A、B、C对边分别是已知,求△ABC的面积.

正确答案

解:由题意得:sin(B+A)+sin(B﹣A)=4sinAcosA,即sinBcosA=2sinAcosA,

当cosA=0时,则A= ,B= ,则a=2b,c= b,

又c+b=2+ ,所以b= ,c= 

所以S△ABCbcsinA= 

当cosA≠0时,得sinB=2sinA,

由正弦定理得:b=2a,①

又由余弦定理得:cos = = ,②

将①代入②,解得a=1或a=7+4>b+c=2+ (舍去),

b=2,此时c= 

所以△ABC是直角三角形,所以S△ABCac= 

综上,△ABC的面积为  .

1
题型:简答题
|
简答题

在△ABC中,

(1)求角B;

(2)若,求cosC的值。

正确答案

解:(1)因为

由正弦定理得

所以

由余弦定理得

因为0<B<π,

所以

(2)因为

所以

所以

所以

所以

所以

1
题型:简答题
|
简答题

在△ABC中,已知AC=2,BC=3,cosA=

(1)求sinB的值;

(2)求sin(2B+)的值;

(3)求△ABC的面积。

正确答案

解:(1)在△ABC中,

由正弦定理,得

所以,

(2)因为,所以角A为钝角,从而角B为锐角,

于是

(3)△ABC的面积为

1
题型:简答题
|
简答题

在△ABC中,角A,B,C的对边分别为

(Ⅰ)求sinC的值;

(Ⅱ)求△ABC的面积.

正确答案

解:(Ⅰ)∵A、B、C为△ABC的内角,且>0,

所以A为锐角,则sinA==

(Ⅱ)由(Ⅰ)知

又∵

∴在△ABC中,由正弦定理,得

∴△ABC的面积

1
题型:简答题
|
简答题

在△ABC中,A、B为锐角,角A、B、C所对的边分别为a、b、c,且a-b=-1,sinA=,sinB=

(1)求a,b的值;

(2)求角C和边c的值。

正确答案

解:(1)由

联立

(2)A,B为锐角,

∴C=135°,

下一知识点 : 平面向量
百度题库 > 高考 > 数学 > 三角函数

扫码查看完整答案与解析

  • 上一题
  • 1/15
  • 下一题