- 函数的最值与导数的关系
- 共6078题
(2015秋•天水校级期末)已知函数f(x)=2x3-3x.
(Ⅰ)求f(x)在区间[-2,1]上的最大值;
(Ⅱ)若过点P(1,t)存在3条直线与曲线y=f(x)相切,求t的取值范围.
正确答案
解:(Ⅰ)令f′(x)=6x2-3=0解得,x=±,
则f(x)在x=-时取得极大值,
∵f(-)=
,f(1)=2-3=-1,
则f(x)在区间[-2,1]上的最大值为.
(Ⅱ)设过点P(1,t)的直线与曲线y=f(x)相切于点(x,2x3-3x),
则=6x2-3,
化简得,4x3-6x2+3+t=0,
令g(x)=4x3-6x2+3+t,
则令g′(x)=12x(x-1)=0,
则x=0,x=1.
g(0)=3+t,g(1)=t+1,
又∵过点P(1,t)存在3条直线与曲线y=f(x)相切,
则(t+3)(t+1)<0,
解得,-3<t<-1.
解析
解:(Ⅰ)令f′(x)=6x2-3=0解得,x=±,
则f(x)在x=-时取得极大值,
∵f(-)=
,f(1)=2-3=-1,
则f(x)在区间[-2,1]上的最大值为.
(Ⅱ)设过点P(1,t)的直线与曲线y=f(x)相切于点(x,2x3-3x),
则=6x2-3,
化简得,4x3-6x2+3+t=0,
令g(x)=4x3-6x2+3+t,
则令g′(x)=12x(x-1)=0,
则x=0,x=1.
g(0)=3+t,g(1)=t+1,
又∵过点P(1,t)存在3条直线与曲线y=f(x)相切,
则(t+3)(t+1)<0,
解得,-3<t<-1.
已知a>0,b∈R,函数f(x)=4ax3-2bx-a+b.
(Ⅰ)证明:当0≤x≤1时,
(i)函数f(x)的最大值为|2a-b|+a;
(ii)f(x)+|2a-b|+a≥0;
(Ⅱ)若-1≤f(x)≤1对x∈[0,1]恒成立,求a+b的取值范围.
正确答案
(Ⅰ)证明:(ⅰ)f′(x)=12a(x2-)
当b≤0时,f′(x)>0,在0≤x≤1上恒成立,此时最大值为:f(1)=|2a-b|﹢a;
当b>0时,在0≤x≤1上的正负性不能判断,f‘(x)在区间[0,1]先负后可能正,f(x)图象在[0,1]区间内是凹下去的,所以最大值正好取在区间的端点,此时最大值为:f(x)max=max{f(0),f(1)}=|2a-b|﹢a;
综上所述:函数在0≤x≤1上的最大值为|2a-b|﹢a;
(ⅱ) 要证f(x)+|2a-b|+a≥0,即证g(x)=-f(x)≤|2a-b|﹢a.
亦即证g(x)在0≤x≤1上的最大值小于(或等于)|2a-b|﹢a,
∵g(x)=-4ax3+2bx+a-b,∴令g′(x)=-12ax2+2b=0,
当b≤0时,;g′(x)<0在0≤x≤1上恒成立,
此时g(x)的最大值为:g(0)=a-b<3a-b=|2a-b|﹢a;
当b>0时,g′(x)在0≤x≤1上的正负性不能判断,
∴g(x)max=max{g(),g(1)}={
}=
∴g(x)max≤|2a-b|﹢a;
综上所述:函数g(x)在0≤x≤1上的最大值小于(或等于)|2a-b|﹢a.
即f(x)+|2a-b|+a≥0在0≤x≤1上恒成立.
(Ⅱ)由(Ⅰ)知:函数在0≤x≤1上的最大值为|2a-b|﹢a,且函数在0≤x≤1上的最小值比-(|2a-b|﹢a)要大.
∵-1≤f(x)≤1对x∈[0,1]恒成立,
∴|2a-b|﹢a≤1.
取b为纵轴,a为横轴,则可行域为:
或
,目标函数为z=a+b.
作图如右:
由图易得:a+b的取值范围为(-1,3]
解析
(Ⅰ)证明:(ⅰ)f′(x)=12a(x2-)
当b≤0时,f′(x)>0,在0≤x≤1上恒成立,此时最大值为:f(1)=|2a-b|﹢a;
当b>0时,在0≤x≤1上的正负性不能判断,f‘(x)在区间[0,1]先负后可能正,f(x)图象在[0,1]区间内是凹下去的,所以最大值正好取在区间的端点,此时最大值为:f(x)max=max{f(0),f(1)}=|2a-b|﹢a;
综上所述:函数在0≤x≤1上的最大值为|2a-b|﹢a;
(ⅱ) 要证f(x)+|2a-b|+a≥0,即证g(x)=-f(x)≤|2a-b|﹢a.
亦即证g(x)在0≤x≤1上的最大值小于(或等于)|2a-b|﹢a,
∵g(x)=-4ax3+2bx+a-b,∴令g′(x)=-12ax2+2b=0,
当b≤0时,;g′(x)<0在0≤x≤1上恒成立,
此时g(x)的最大值为:g(0)=a-b<3a-b=|2a-b|﹢a;
当b>0时,g′(x)在0≤x≤1上的正负性不能判断,
∴g(x)max=max{g(),g(1)}={
}=
∴g(x)max≤|2a-b|﹢a;
综上所述:函数g(x)在0≤x≤1上的最大值小于(或等于)|2a-b|﹢a.
即f(x)+|2a-b|+a≥0在0≤x≤1上恒成立.
(Ⅱ)由(Ⅰ)知:函数在0≤x≤1上的最大值为|2a-b|﹢a,且函数在0≤x≤1上的最小值比-(|2a-b|﹢a)要大.
∵-1≤f(x)≤1对x∈[0,1]恒成立,
∴|2a-b|﹢a≤1.
取b为纵轴,a为横轴,则可行域为:
或
,目标函数为z=a+b.
作图如右:
由图易得:a+b的取值范围为(-1,3]
设函数f(x)=x2+bln(x+1),其中b≠0.
(1)若b=-12,求f(x)在[1,3]的最小值;
(2)如果f(x)在定义域内既有极大值又有极小值,求实数b的取值范围.
正确答案
解:(1)由题意知,f(x)的定义域为(1,+∞)
b=-12时,由,得x=2(x=3舍去),
当x∈[1,2)时f′(x)<0,当x∈(2,3]时,f′(x)>0,
所以当x∈[1,2)时,f(x)单调递减;当x∈(2,3]时,f(x)单调递增,
所以f(x)min=f(2)=4-12ln3
(2)由题意在(-1,+∞)有两个不等实根,
即2x2+2x+b=0在(-1,+∞)有两个不等实根,
设g(x)=2x2+2x+b,则,解之得
解析
解:(1)由题意知,f(x)的定义域为(1,+∞)
b=-12时,由,得x=2(x=3舍去),
当x∈[1,2)时f′(x)<0,当x∈(2,3]时,f′(x)>0,
所以当x∈[1,2)时,f(x)单调递减;当x∈(2,3]时,f(x)单调递增,
所以f(x)min=f(2)=4-12ln3
(2)由题意在(-1,+∞)有两个不等实根,
即2x2+2x+b=0在(-1,+∞)有两个不等实根,
设g(x)=2x2+2x+b,则,解之得
函数在区间[0,6]上的最大值是( )
正确答案
解析
解:f‘(x)=4x-x2=-x(x-4),
当0≤x<4时,f'(x)≥0,f(x)递增;
当4<x≤6时,f'(x)<0,f(x)递减;
∴x=4时f(x)取得极大值,也即最大值,
∴f(x)max=f(4)=2×16-=
,
故选:A.
某公司生产某种产品,固定成本为20000元,每生产一单位产品,成本增加100元,已知总收益R与年产量x的关系为R=R(x)=,则总利润最大时,每年生产的产品数量是______.
正确答案
300
解析
解析:由题意,总成本为C=20000+100x.
∴总利润为:P=R-C=,
P′=.
令P′=0,即可得到正确答案,即x=300.
故答案:300.
扫码查看完整答案与解析