- 指数函数
- 共4941题
计算:( )。
正确答案
3
(1)log2125•log34•log59=______;(2)已知xlog34=1,则4x+4-x=______.
正确答案
对于(1)log2125•log34•log59根据换底公式,
则log2125•log34•log59=•
•
=
•
•
=log5125•log24•log39=3×2×2=12
故答案为12.
对于(2)已知xlog34=1,求4x+4-x的值.
因为xlog34==1 所以4x=3
所以4x+4-x=3+=
.
故答案为.
计算:(0.25)12+()0-2-1=______.
正确答案
原式=[()2]12+1-
=
+1-
=1.
故答案为1.
函数y=()-2x2-8x+1(-3≤x≤1)的值域是______,单调递增区间是______..
正确答案
y=(
1
3
)-2x2-8x+1
可以看做是由y=(
1
3
)t和t=-2x2-8x+1,两个函数符合而成,
第一个函数是一个单调递减函数,
要求原函数的值域,只要求出t=-2x2-8x+1,在[1,3]上的值域就可以,
t∈[-9,9]
此时y∈[3-9,39]
函数的递增区间是(-∞,-2],
故答案为:[3-9,39];(-2,+∞)
已知函数f(x)=,若f(a)=1,则实数a的值是______.
正确答案
因为f(a)=1,且f(x)=.
所以当a≥0时,有f(a)=2a-1=1⇒2a=2⇒a=1;
当a<0时,有f(a)=-a2-2a=1⇒(a+1)2=0⇒a=-1.
综上得:a=±1.
故答案为:±1.
[(1-) 2]12-(1+
)-1=______.
正确答案
[(1-) 2]12-(1+
)-1=|1-
|2×
-
=
-1-(
-1)=0
故答案为:0
若x12+x-12=3,则=______.
正确答案
∵x12+x-12=3平方得
∴x+x-1+2=9
∴x+x-1=7平方得
x2+x-2=47
∵x12+x-12=3三次方得
x32+x-32+3x12+3x-12=27
∴x32+x-32 =18
∴=
=
故答案为:
计算:a34•a-12÷(a>0)=______.
正确答案
当a>0时,a34•a-12÷=a34•a-12• a-43=a34-12-43=a-112
故答案为a-112
(1)=______;
(2)log48=______;
(3)lg+lg
+log31=______.
正确答案
(1)原式==m56+14-12-13-14=m0=1;
(2)原式==
;
(3)原式=lg+0=
lg10=
.
故答案分别为1;;
.
方程3x-1=的解是______.
正确答案
3x-1==3-2⇒x-1=-2⇒x=-1
故答案为:x=-1.
扫码查看完整答案与解析