热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 12 分

20.已知椭圆C:)的离心率,左右焦点分别为,抛物线的焦点F恰好是该椭圆的一个焦点。

(1)求椭圆方程;

(2)过椭圆的左顶点A作两条弦分别交椭圆于两点,满足,当点在椭圆上运动时,直线是否经过轴上的一定点,若过定点,请给出证明,并求出定点坐标;若不过定点,请说明理由。

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

量积判断两个平面向量的垂直关系椭圆的定义及标准方程圆锥曲线的定点、定值问题圆锥曲线中的探索性问题
1
题型:简答题
|
简答题 · 12 分

20.已知椭圆E:(a>b>0)的右焦点F2与抛物线的焦点重合,过F2作与x轴垂直的直线交椭圆于S,T两点,交抛物线于C,D两点,且

(I)求椭圆E的标准方程; 

(Ⅱ)设Q(2,0),过点(-1,0)的直线l交椭圆E于M、N两点.

          (i)当时,求直线l的方程;

          (ii)记ΔQMN的面积为S,若对满足条件的任意直线l,不等式Sλtan∠MQN恒成立,求λ的最小值.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

椭圆的定义及标准方程
1
题型:简答题
|
简答题 · 13 分

21. 已知椭圆的离心率为,其左、右焦点分别为F1、F2,点P是坐标平面内一点,且(O为坐标原点)。

(1)求椭圆C的方程;

(2)过点且斜率为的动直线交椭圆于A、B两点,在轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出M的坐标和面积的最大值;若不存在,说明理由。

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

平面向量数量积的运算向量在几何中的应用椭圆的定义及标准方程圆锥曲线中的范围、最值问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 12 分

20. 椭圆C的中心在原点,一个焦点F(-2,0),且短轴长与长轴长的比是

(1)求椭圆C的方程;

(2)设点M(m,0)在椭圆C的长轴上,点P是椭圆上任意一点.当最小时,点P恰好落在椭圆的右顶点,求实数m的取值范围.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

椭圆的定义及标准方程圆锥曲线中的范围、最值问题
1
题型:简答题
|
简答题 · 13 分

21.已知椭圆的中心在坐标原点O,焦点在x轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点,过右焦点F与x轴不垂直的直线l交椭圆于P,Q两点.

(1)求椭圆的方程;

(2)在线段OF上是否存在点M(m,0),使得以MP,MQ为邻边的平行四边形是菱形?若存在,求出m的取值范围;若不存在,请说明理由.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

椭圆的定义及标准方程圆锥曲线中的探索性问题
1
题型:简答题
|
简答题 · 12 分

20.  已知椭圆C:经过点 ,离心率 ,直线的方程为  .

(1)求椭圆C的方程;

(2)AB是经过右焦点F的任一弦(不经过点P),设直线与l相交于点M,记PA,PB,PM的斜率分别为,问:是否存在常数,使得?若存在,求出的值,若不存在,说明理由。

正确答案

 

解析

解析已在路上飞奔,马上就到!

知识点

椭圆的定义及标准方程圆锥曲线中的探索性问题
1
题型:填空题
|
填空题 · 5 分

15.如图,已知过椭圆的左顶点A(-a,0)作直线l交y轴于点P,交椭圆于点Q,若△AOP是等腰三角形,且=2,则椭圆的离心率为_______。

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

椭圆的定义及标准方程
1
题型:简答题
|
简答题 · 12 分

20.已知椭圆)的两个焦点分别为,过点的直线与椭圆相交于点A,B两点,且

(1)求椭圆的离心率

(2)求直线AB的斜率;

(3)设点C与点A关于坐标原点对称,直线上有一点H(m,n)()在的外接圆上,求的值。

正确答案

解: (1)解:由,得,从而

整理得,故离心率  

(2)解:由(1)知,,所以椭圆的方程可以写为

设直线AB的方程为

由已知设则它们的坐标满足方程组     

消去y整理,得

依题意,

有题设知,点B为线段AE的中点,所以联立三式,

解得

将结果代入韦达定理中解得      

(3)由(2)知,,当时,

得A由已知得线段的垂直平分线l的方程为

直线l与x轴的交点的外接圆的圆心,因此外接圆的方程为

直线的方程为,于是点满足方程组

,解得,故时,

同理可得   

解析

解析已在路上飞奔,马上就到!

知识点

直线的倾斜角与斜率椭圆的定义及标准方程直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 12 分

21.设椭圆的离心率,右焦点到直线的距离为坐标原点。

(I)求椭圆的方程;

(II)过点作两条互相垂直的射线,与椭圆分别交于两点,证明点到直线的距离为定值,并求弦长度的最小值.

正确答案

解:(I)由 

 由右焦点到直线的距离为  

得:       解得  

所以椭圆C的方程为      

(II)设,  直线AB的方程为

与椭圆联立消去y得 

   

  

   整理得    

所以O到直线AB的距离            

,  当且仅当OA=OB时取“=”号   

    

即弦AB的长度的最小值是    

解析

解析已在路上飞奔,马上就到!

知识点

椭圆的定义及标准方程
1
题型:简答题
|
简答题 · 12 分

20. 已知圆C:的半径等于椭圆E:(a>b>0)的短半轴长,椭圆E的右焦点F在圆C内,且到直线l:y=x-的距离为,点M是直线l与圆C的公共点,设直线l交椭圆E于不同的两点A(x1,y1),(x2,y2).

(Ⅰ)求椭圆E的方程;

(Ⅱ)求证:|AF|-|BF|=|BM|-|AM|.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

椭圆的定义及标准方程直线、圆及圆锥曲线的交汇问题
下一知识点 : 双曲线及其性质
百度题库 > 高考 > 理科数学 > 椭圆及其性质

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题