热门试卷

X 查看更多试卷
1
题型: 单选题
|
单选题 · 5 分

A

B

C

D

正确答案

B

知识点

椭圆的几何性质抛物线的标准方程和几何性质
1
题型:简答题
|
简答题 · 12 分

正确答案

知识点

椭圆的几何性质圆锥曲线的定点、定值问题圆锥曲线中的探索性问题
1
题型:简答题
|
简答题 · 12 分

在平面直角坐标系中,过椭圆的一个焦点作一直线交椭圆于两点,线段长的最大值与最小值分别是.

23.求椭圆的方程;

24.与圆相切的直线与椭圆交于两点,若椭圆上一点满足,求实数的取值范围.

第(1)小题正确答案及相关解析

正确答案

(Ⅰ)由题意知,解得

所求椭圆的方程为. …………………………………………(5分)

解析

由题意,得,得,从而椭圆方程为

考查方向

本题考查椭圆焦点弦知识,由焦点弦的公式可以知道最大值与最小值

解题思路

由焦点弦公式,可得,从而求出a,b的值

易错点

焦点弦的最大值与最小值容易弄错

教师点评

本题只需要记住焦点弦的公式就可以解决,在近几年中考到的频率较高,是解析几何中重要的一块

第(2)小题正确答案及相关解析

正确答案

(Ⅱ)设

由直线与圆相切,

所以,①                                                         …………………………(6分)

联立

所以

,      ………………………………………………(9分)

将点C代入椭圆方程并化简得,②  …………………………(10分)

①代入②得,解得.                                                                                                                           …………………………(12分)

解析

(Ⅱ)设

由直线与圆相切,

所以,①                                                         …………………………(6分)

联立

所以

,      ………………………………………………(9分)

将点C代入椭圆方程并化简得,②  …………………………(10分)

①代入②得,解得

考查方向

本题考查圆与直线相切问题,向量在圆锥曲线上的应用,变量取值范围问题

解题思路

先由圆与直线相切,求出k,然后联立直线与椭圆方程,消去一个元,算出两根和积,再结合向量的性质,联立关系式,求出变量取值范围

易错点

容易算错斜率,以及变量的取值范围

教师点评

本题是圆锥曲线中的常规题,难度是中等,需要掌握切线问题、设而不求法、向量等知识,才能求出变量的取值范围,在近几年中考到的频率较高,是解析几何中重要的一块

1
题型:简答题
|
简答题 · 12 分

20.已知椭圆)的半焦距为,原点到经过两点的直线的距离为

(1)求椭圆的离心率;

(2)如图,是圆的一条直径,若椭圆经过两点,求椭圆的方程.

正确答案

(1)过点(c,0),(0,b)的直线方程为

则原点O到直线的距离

,得,解得离心率.

(2)解法一:由(1)知,椭圆E的方程为.              (1)

依题意,圆心M(-2,1)是线段AB的中点,且.

易知,AB不与x轴垂直,设其直线方程为,代入(1)得

,得解得.

从而.

于是.

,得,解得.

故椭圆E的方程为.

解法二:由(I)知,椭圆E的方程为.              (2)

依题意,点A,B关于圆心M(-2,1)对称,且.

两式相减并结合.

易知,AB不与x轴垂直,则,所以AB的斜率

因此AB直线方程为,代入(2)得

所以.

于是.

,得,解得.

故椭圆E的方程为.

解析

解析已在路上飞奔,马上就到!

知识点

椭圆的定义及标准方程椭圆的几何性质直线、圆及圆锥曲线的交汇问题
1
题型: 单选题
|
单选题 · 4 分

16. 如图,两个椭圆内部重叠区域的边界记为曲线是曲线

上的任意一点,给出下列三个判断:

(1)

四点的距离之和为定值

(2)曲线关于直线均对称

(3)曲线所围区域面积必小于36

上述判断中正确命题的个数为(    )

A0个

B1个

C2个

D3个

正确答案

C

解析

对于(1)若点P在椭圆上,P到两点的距离之和为定值、到两点的距离之和不为定值,故错;对于(2)关于直线均对称,关于直线均对称,故正确;对于(3)曲线C所围区域在边长为6的正方形内部,所以面积必小于36,故正确。

考查方向

椭圆性质的应用。

解题思路

①若点P在椭圆上,P到两点的距离之和为定值、到两点的距离之和不为定值②两个椭圆关于直线均对称,关于直线均对称③曲线C所围区域在边长为6的正方形内部。

易错点

分析不全面、不透彻

知识点

椭圆的定义及标准方程椭圆的几何性质圆锥曲线的定点、定值问题
1
题型:简答题
|
简答题 · 12 分

20.(本题满分12分)

已知椭圆,直线不过原点且不平行于坐标轴,有两个交点,线段的中点为.

(Ⅰ)证明:直线的斜率与的斜率的乘积为定值;

(Ⅱ)若过点,延长线段交于点,四边形能否为平行四边形?若能,求此时的斜率,若不能,说明理由.

正确答案

(Ⅰ)详见解析;(Ⅱ)能,.

试题分析:(Ⅰ)题中涉及弦的中点坐标问题,故可以采取“点差法”或“韦达定理”两种方法求解:设端点的坐标,代入椭圆方程并作差,出现弦的中点和直线的斜率;设直线的方程同时和椭圆方程联立,利用韦达定理求弦的中点,并寻找两条直线斜率关系;

(Ⅱ)根据(Ⅰ)中结论,设直线方程并与椭圆方程联立,求得坐标,利用以及直线过点列方程求的值.

试题(Ⅰ)设直线.

代入,故

.于是直线的斜率,即.所以直线的斜率与的斜率的乘积为定值.

(Ⅱ)四边形能为平行四边形.

因为直线过点,所以不过原点且与有两个交点的充要条件是.

由(Ⅰ)得的方程为.设点的横坐标为.由,即.将点的坐标代入直线的方程得,因此.四边形为平行四边形当且仅当线段与线段互相平分,即.于是

.解得.因为,所以当的斜率为

时,四边形为平行四边形.

解析

解析已在路上飞奔,马上就到!

知识点

椭圆的几何性质圆锥曲线的定点、定值问题圆锥曲线中的探索性问题
下一知识点 : 双曲线及其性质
百度题库 > 高考 > 理科数学 > 椭圆及其性质

扫码查看完整答案与解析

  • 上一题
  • 1/6
  • 下一题