- 利用导数求函数的极值
- 共167题
请你谈一谈对“不同生产方式以及生产工艺中,生产物流管理所采用的方法和手段是不同的。”这句话的理解。
正确答案
测试
选修4-5:不等式选讲
设函数=
(1)证明:2;
(2)若,求的取值范围。
正确答案
见解析。
解析
(1)由a>0,有f(x)=|x+1/a|+|x-a|≥|x+1/a-(x-a)|=1/a+a≥2.所以f(x)≥2.
(2)f(x)=|3+1/a|+|3-a|。
当a>3时,f(3)=a+1/a,由f(3)<5得3<a<
当0<a≤3时,f(3)=6-a+,f(3)<5得<a≤3
综上所诉,a的取值范围为()
知识点
设函数f(x)=+lnx 则 ( )
正确答案
解析
略
知识点
已知函数,。
(1)设函数F(x)=18f(x)-x2[h(x)]2,求F(x)的单调区间与极值;
(2)设,解关于x的方程;
(3)设,证明:。
正确答案
见解析
解析
(1),
。
令,得(舍去)。
当时。;当时,,
故当时,为增函数;当时,为减函数。
为的极大值点,且。
(2)方法一:原方程可化为,
即为,且
①当时,,则,即,
,此时,∵,
此时方程仅有一解。
②当时,,由,得,,
若,则,方程有两解;
若时,则,方程有一解;
若或,原方程无解。
方法二:原方程可化为,
即,
①当时,原方程有一解;
②当时,原方程有二解;
③当时,原方程有一解;
④当或时,原方程无解。
(3)由已知得,
。
设数列的前n项和为,且()
从而有,当时,。
又
。
即对任意时,有,又因为,所以。
则,故原不等式成立。
知识点
已知函数f(x)=axsinx-(a∈R),且在[0,]上的最大值为。
(1)求函数f(x)的解析式;
(2)判断函数f(x)在(0,π)内的零点个数,并加以证明。
正确答案
(1) f(x)=xsinx-; (2)2
解析
(1)由已知得f′(x)=a(sinx+xcosx),
对于任意x∈(0,),有sinx+xcosx>0。
当a=0时,,不合题意;
当a<0,x∈(0,)时,f′(x)<0,从而f(x)在(0,)内单调递减,
又f(x)在[0,]上的图象是连续不断的,故f(x)在[0,]上的最大值为,不合题意;
当a>0,x∈(0,)时,f′(x)>0,从而f(x)在(0,)内单调递增,又f(x)在[0,]上的图象是连续不断的,故f(x)在[0,]上的最大值为,即,
解得a=1。
综上所述,得f(x)=xsinx-。
(2)f(x)在(0,π)内有且只有两个零点。
证明如下:
由(1)知,f(x)=xsinx,从而有f(0)=<0,,
又f(x)在[0,]上的图象是连续不断的,
所以f(x)在(0,)内至少存在一个零点。
又由(1)知f(x)在[0,]上单调递增,故f(x)在(0,)内有且仅有一个零点。
当x∈[,π]时,令g(x)=f′(x)=sinx+xcosx。
由g()=1>0,g(π)=-π<0,且g(x)在[,π]上的图象是连续不断的,故存在m∈(,π),使得g(m)=0。
由g′(x)=2cosx-xsinx,知x∈(,π)时,有g′(x)<0,
从而g(x)在(,π)内单调递减。
当x∈(,m)时,g(x)>g(m)=0,即f′(x)>0,从而f(x)在(,m)内单调递增,故当x∈[,m]时,,故f(x)在[,m]上无零点;
当x∈(m,π)时,有g(x)<g(m)=0,即f′(x)<0,从而f(x)在(m,π)内单调递减。
又f(m)>0,f(π)<0,且f(x)在[m,π]上的图象是连续不断的,从而f(x)在(m,π)内有且仅有一个零点。
综上所述,f(x)在(0,π)内有且只有两个零点
知识点
扫码查看完整答案与解析