热门试卷

X 查看更多试卷
1
题型: 单选题
|
单选题 · 5 分

已知为自然对数的底数,设函数,则

A的极小值点

B的极小值点

C的极大值点

D的极大值点

正确答案

B

解析

知识点

利用导数求函数的极值
1
题型:简答题
|
简答题 · 14 分

已知函数图像上的点处的切线方程为

(1)若函数时有极值,求的表达式

(2)函数在区间上单调递增,求实数的取值范围。

正确答案

见解析。

解析

解:,    --

∵函数处的切线斜率为-3,∴,即

(1)函数时有极值,所以

解得,-

所以

(2)因为函数在区间上单调递增,所以导函数

在区间上的值恒大于或等于零,

,所以实数的取值范围为

知识点

导数的几何意义利用导数研究函数的单调性利用导数求函数的极值
1
题型:简答题
|
简答题 · 14 分

设函数.

(1)若函数在区间(-2,0)内恰有两个零点,求a的取值范围;

(2)当a=1时,求函数在区间[t,t+3]上的最大值.

正确答案

见解析。

解析

(1)∵

,解得

当x变化时,的变化情况如下表:

故函数的单调递增区间为(-∞,-1),(a,+∞);单调递减区间为(-1,a);

因此在区间(-2,-1)内单调递增,在区间(-1,0)内单调递减,要使函数在区间内恰有两个零点,当且仅当

解得, 所以a的取值范围是(0,).

(2)当a=1时,. 由(1)可知,函数的单调递增区间为(-∞,-1),(1,+∞);单调递减区间为(-1,1);.

①当t+3<-1,即t<-4时,

因为在区间[t,t+3]上单调递增,所以在区间[t,t+3]上的最大值为

②当,即时,

因为在区间上单调递增,在区间[-1,1]上单调递减,在区间[1,2]上单调递增,且,所以在区间上的最大值为.

,即时,有[t,t+3] ,-1[t,t+3],所以上的最大值为

③当t+3>2,即t>-1时,

由②得在区间上的最大值为. 因为在区间(1,+∞)上单调递增,所以,故上的最大值为.

综上所述,当a=1时,

在[t,t+3]上的最大值.

知识点

利用导数研究函数的单调性利用导数求函数的极值利用导数求函数的最值利用导数求参数的取值范围
1
题型:简答题
|
简答题 · 12 分

正确答案

见解析。

解析

结合①可知

所以,x1=是极小值点,x2=是极大值点。

(2)若f(x)为R上的单调函数,则f′(x)在R上不变号,结合①与条件a>0,知ax2-2ax+1≥0在R上恒成立,因此Δ=4a2-4a=4a(a-1)≤0,由此并结合a>0,知0<a≤1。

知识点

利用导数研究函数的单调性利用导数求函数的极值
1
题型:简答题
|
简答题 · 14 分

已知函数(其中为常数)。

(1)如果函数有相同的极值点,求的值;

(2)设,问是否存在,使得,若存在,请求出实数的取值范围;若不存在,请说明理由。

(3)记函数,若函数有5个不同的零点,求实数的取值范围

正确答案

见解析。

解析

(1),则

,得,而处有极大值,

;综上:

(2)假设存在,即存在,使得

时,又,故,则存在,使得

 当时,

 当时,,……6分

无解;综上:

(3)据题意有有3个不同的实根,有2个不同的实根,且这

5个实根两两不相等。

(ⅰ)有2个不同的实根,只需满足

(ⅱ)有3个不同的实根,

时,处取得极大值,而,不符合题意,舍;

时,不符合题意,舍;

时,处取得极大值,;所以

因为(ⅰ)(ⅱ)要同时满足,故;(注:也对)

下证:这5个实根两两不相等,即证:不存在使得

时成立.

若存在使得

,即,得

时,,不符合,舍去;

时,既有   ①;

又由,即  ②;    联立①②式,可得

而当时,没有5个不

同的零点,故舍去,所以这5个实根两两不相等。

综上,当时,函数有5个不同的零点。

知识点

函数零点的判断和求解利用导数求函数的极值利用导数求参数的取值范围
1
题型:简答题
|
简答题 · 12 分

已知函数

(1)若a=1,判断函数是否存在极值,若存在,求出极值;若不存在,说明理由;

(2)求函数的单调区间;

(3)设函数,若至少存在一个,使得成立,求实数a的取值范围。

正确答案

见解析。

解析

(1)当时,,其定义域为(0,+).

因为

所以在(0,+)上单调递增,

所以函数不存在极值.

(2)函数的定义域为

时,

因为在(0,+)上恒成立,所以在(0,+)上单调递减.

时,

时,方程与方程有相同的实根.

①当时,>0,可得,且

因为时,,所以上单调递增;

因为时,,所以上单调递减;

因为时,,所以上单调递增;

②当时,,所以在(0,+)上恒成立,故在(0,+)上单调递增.                                                              (9分)

综上,当时,的单调减区间为(0,+);当时,的单调增区间为;单调减区间为;当时,的单调增区间为(0,+).

(3)由存在一个,使得成立,

,即.

,等价于“当 时,”.

因为,且当时,

所以上单调递增,

,因此.

知识点

利用导数研究函数的单调性利用导数求函数的极值利用导数求参数的取值范围
1
题型:简答题
|
简答题 · 13 分

已知函数,其中

(1)若,求函数的定义域和极值;

(2)当时,试确定函数的零点个数,并证明。

正确答案

见解析

解析

(1)解:函数的定义域为,且.        ……………… 1分

.                           ……………… 3分

,得

变化时,的变化情况如下:

……………… 4分

的单调减区间为;单调增区间为

所以当时,函数有极小值.                ……………… 5分

(2)解:结论:函数存在两个零点。

证明过程如下:

由题意,函数

因为

所以函数的定义域为.                                ……………… 6分

求导,得,     ………………7分

,得

变化时,的变化情况如下:

故函数的单调减区间为;单调增区间为

时,函数有极大值;当时,函数有极小值.                                                  ……………… 9分

因为函数单调递增,且

所以对于任意.                        ……………… 10分

因为函数单调递减,且

所以对于任意.                          ……………… 11分

因为函数单调递增,且

所以函数上仅存在一个,使得函数,  ………… 12分

故函数存在两个零点(即).                     ……………… 13分

知识点

函数的定义域及其求法利用导数求函数的极值
1
题型:填空题
|
填空题 · 5 分

函数的极小值是             。

正确答案

7

解析

知识点

利用导数求函数的极值
1
题型:简答题
|
简答题 · 12 分

已知函数.()。

(1)当时,求函数的极值;

(2)若对,有成立,求实数的取值范围。

正确答案

见解析。

解析

(1)当时,

=

,解得.

时,得

时,得.

变化时,的变化情况如下表:

∴当时,函数有极大值,

时函数有极小值,

(2)∵,∴对成立,[来源:学科网ZXXK]

成立,---7分

①当时,有

,对恒成立,

,当且仅当时等号成立,

-

②当时,有

,对恒成立,

,当且仅当时等号成立,

知识点

导数的运算利用导数求函数的极值利用导数证明不等式
1
题型:简答题
|
简答题 · 14 分

已知函数R .

(1)若函数在其定义域上为增函数,求的取值范围;

(2)当时,函数在区间N上存在极值,求的最大

值。

( 参考数值: 自然对数的底数)

正确答案

见解析。

解析

(1)解法1:函数的定义域为,

,   ∴.

∵ 函数上单调递增,

, 即都成立.

都成立.

时, , 当且仅当, 即时,取等号。

, 即.

的取值范围为.

解法2:函数的定义域为,

, ∴.

方程的判别式.

①     当, 即时, ,

此时, 都成立,

故函数在定义域上是增函数.

②     当, 即时, 要使函数在定义域上为增函数, 只需都成立。

, 则.

.

综合①②得的取值范围为.

(2):当时, .

.

∵ 函数N上存在极值,

∴ 方程N上有解,

即方程N上有解.

, 由于, 则,

∴函数上单调递减.

,

,

∴函数的零点.

∵方程 N上有解, N

.

N

的最大值为.

知识点

利用导数研究函数的单调性利用导数求函数的极值利用导数求函数的最值
下一知识点 : 利用导数求函数的最值
百度题库 > 高考 > 文科数学 > 利用导数求函数的极值

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题