热门试卷

X 查看更多试卷
1
题型:填空题
|
填空题 · 5 分

某地区高中分三类,类学校共有学生2000人,类学校共有学生3000人,类学校共有学生4000人,若采取分层抽样的方法抽取900人,则类学校中应抽学生        人。

正确答案

200

解析

高中生共有9000人,抽取900,抽取比例为

故A类学校中应抽学生人。

故答案为200。

知识点

古典概型的概率
1
题型:简答题
|
简答题 · 13 分

某市电视台为了宣传举办问答活动,随机对该市15~65岁的人群抽样了n人,回答问题统计结果如下图表所示:

(1)分别求出a,b,x,y的值;

(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组各抽取多少人?

(3)在(2)的前提下,电视台决定在所抽取的6人中随机抽取2人颁发幸运奖,求所抽取的人中第2组至少有1人获得幸运奖的概率。

正确答案

见解析。

解析

(1)由频率表中第1组数据可知,第1组总人数为

再结合频率分布直方图可知.

∴a=100×0.020×10×0.9=18,

b=100×0.025×10×0.36=9,

,

(2)第2,3,4组中回答正确的共有54人。

∴利用分层抽样在54人中抽取6人,每组分别抽取的人数为:

第2组:人,

第3组:人,

第4组:人。

(3)设第2组的2人为,第3组的3人为,第4组的1人为则从6人中抽2人所有可能的结果有:,共15个基本事件,

其中第2组至少有1人被抽中的有这9个基本事件。

∴第2组至少有1人获得幸运奖的概率为

知识点

古典概型的概率分层抽样方法频率分布表频率分布直方图
1
题型:填空题
|
填空题 · 4 分

若从总体中随机抽取的样本为,则该总体的标准差的点估计值是        。

正确答案

解析

知识点

古典概型的概率
1
题型:简答题
|
简答题 · 12 分

对某电子元件进行寿命追踪调查,所得情况如下频率分布直方图。

(1)图中纵坐标处刻度不清,根据图表所提供的数据还原

(2)根据图表的数据按分层抽样,抽取个元件,寿命为之间的应抽取几个;

(3)从(2)中抽出的寿命落在之间的元件中任取个元件,求事件“恰好有一个寿命为,一个寿命为”的概率。

正确答案

见解析。

解析

(1)根据题意:

解得

(2)设在寿命为之间的应抽取个,根据分层抽样有:

解得:

所以应在寿命为之间的应抽取

(3)记“恰好有一个寿命为,一个寿命为”为事件,由(2)知

寿命落在之间的元件有个分别记,落在之间的元件有

个分别记为:,从中任取个球,有如下基本事件:

,共有个基本事件

事件 “恰好有一个寿命为,一个寿命为”有:

共有个基本事件

答:事件“恰好有一个寿命为,另一个寿命为”的概率为

知识点

古典概型的概率分层抽样方法频率分布直方图
1
题型:简答题
|
简答题 · 12 分

一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如表所示(单位:辆),若按A,B,C三类用分层抽样的方法在这个月生产的轿车中抽取50辆,则A类轿车有10辆。

(1)求z的值;

(2)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下: 9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把这8辆轿车的得分看作一个总体,从中任取一个分数,记这8辆轿车的得分的平均数为,定义事件{,且函数没有零点},求事件发生的概率。

正确答案

见解析。

解析

(1)设该厂本月生产轿车为辆,由题意得:,所以

=2000-100-300-150-450-600=400

(2)  8辆轿车的得分的平均数

把8辆轿车的得分看作一个总体,从中任取一个分数对应的基本事件的总数为个,

,且函数没有零点

发生当且仅当的值为:8。6,  9。2,  8。7,  9。0共4个,

知识点

古典概型的概率
下一知识点 : 与长度、角度有关的几何概型
百度题库 > 高考 > 文科数学 > 古典概型的概率

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题