- 弦切角的性质
- 共102题
如图,AB、AC是⊙O的两条切线,切点分别为B、C.若∠BAC=60°,BC=6,则⊙O的半径为______.
正确答案
2
解析
解:连接OB,OA交BC于点D,
AB、AC是⊙O的两条切线,切点分别为B、C.
且∠BAC=60°,BC=6,
则:∠ABO=90°,∠AOB=60°,且BD=3,
设:OD=x,则:BO=2x,
利用勾股定理得:x2+9=4x2
解得:x=
所以:圆的半径为2.
故答案为:2
选修4-1:几何证明选讲
如图,AB是⊙O的直径,AC是弦,直线CE和⊙O切于点C,AD丄CE,垂足为D.
(Ⅰ) 求证:AC平分∠BAD;
(Ⅱ) 若AB=4AD,求∠BAD的大小.
正确答案
证明:(Ⅰ)连接BC,∵AB是圆O的直径,∴∠ACB=90°.
∴∠B+∠CAB=90°
∵AD⊥CE,∴∠ACD+∠DAC=90°,
∵AC是弦,且直线CE和圆O切于点C,
∴∠ACD=∠B
∴∠DAC=∠CAB,即AC平分∠BAD;
(Ⅱ)由(Ⅰ)知△ABC∽△ACD,∴,由此得AC2=AB•AD.
∵AB=4AD,∴AC2=4AD•AD⇒AC=2AD,于是∠DAC=60°,
故∠BAD的大小为120°.
解析
证明:(Ⅰ)连接BC,∵AB是圆O的直径,∴∠ACB=90°.
∴∠B+∠CAB=90°
∵AD⊥CE,∴∠ACD+∠DAC=90°,
∵AC是弦,且直线CE和圆O切于点C,
∴∠ACD=∠B
∴∠DAC=∠CAB,即AC平分∠BAD;
(Ⅱ)由(Ⅰ)知△ABC∽△ACD,∴,由此得AC2=AB•AD.
∵AB=4AD,∴AC2=4AD•AD⇒AC=2AD,于是∠DAC=60°,
故∠BAD的大小为120°.
如图,PA,PB切⊙O于 A,B两点,AC⊥PB,且与⊙O相交于 D,若∠DBC=22°,则∠APB═______.
正确答案
44°
解析
解:连接AB
根据弦切角有∠DBC=∠DAB=22°
∠PAC=∠DBA
因为垂直∠DCB=90°
根据外角∠ADB=∠DBC+∠DCB=112°
∵∠DBC=∠DAB
∴∠DBA=180°-∠ADB-∠DAB=46°
∴∠PAC=∠DBA=46°
∴∠P=180°-∠PAC-∠PCA=44°
故答案为:44°
如图,AB是⊙O的直径,DE为⊙O的切线,切点为B,点C在⊙O上,若∠CBE=40°,则∠A的度数为( )
正确答案
解析
解:∵AB是⊙O的直径,DE为⊙O的切线,∠CBE=40°,
∴∠A=∠CBE=40°.
故选B.
(几何证明选讲选做题)如图,已知四边形ABCD内接于⊙O,且AB为⊙O的直径,直线MN切
⊙O于D,∠MDA=45°,则∠DCB=______.
正确答案
135°
解析
解:连接BD,
∵AB为⊙O的直径,直线MN切⊙O于D,∠MDA=45°,
∴∠ABD=45°,∠ADB=90°,
∴∠DCB=∠ABD+∠ADB=45°+90°=135°.
故答案为:135°.
扫码查看完整答案与解析