- 圆内接四边形的性质与判定定理
- 共255题
如图,设AB为⊙O的任一条不与直线l垂直的直径,P是⊙O与l的公共点,AC⊥l,BD⊥l,垂足分别为C,D,且PC=PD.
(Ⅰ)求证:l是⊙O的切线;
(Ⅱ)若⊙O的半径OA=5,AC=4,求CD的长.
正确答案
(Ⅰ)证明:连接OP,因为AC⊥l,BD⊥l,
所以AC∥BD.
又OA=OB,PC=PD,
所以OP∥BD,从而OP⊥l.
因为P在⊙O上,所以l是⊙O的切线.
(Ⅱ)解:由上知OP=(AC+BD),
所以BD=2OP-AC=6,
过点A作AE⊥BD,垂足为E,则BE=BD-AC=6-4=2,
在Rt△ABE中,AE==4
,
∴CD=4.
解析
(Ⅰ)证明:连接OP,因为AC⊥l,BD⊥l,
所以AC∥BD.
又OA=OB,PC=PD,
所以OP∥BD,从而OP⊥l.
因为P在⊙O上,所以l是⊙O的切线.
(Ⅱ)解:由上知OP=(AC+BD),
所以BD=2OP-AC=6,
过点A作AE⊥BD,垂足为E,则BE=BD-AC=6-4=2,
在Rt△ABE中,AE==4
,
∴CD=4.
如图,BD为⊙O的直径,AB=AC,AD交BC于E,AE=2,ED=4.
(1)求证:△ABE∽△ADB,并求AB的长;
(2)延长DB到F,使BF=BO,连接FA,那么直线FA与⊙O相切吗?为什么?
正确答案
解析
证明:(1)∵AB=AC,
∴∠ABC=∠C.
∵∠C=∠D,
∴∠ABC=∠D.
又∵∠BAE=∠DAB,
∴△ABE∽△ADB,(3分)
∴,
∴AB2=AD•AE=(AE+ED)•AE=(2+4)×2=12,
∴AB=2.(5分)
解:(2)直线FA与⊙O相切.(6分)
理由如下:
连接OA,
∵BD为⊙O的直径,
∴∠BAD=90°,
∴BD=,
∴BF=BO=.
∵AB=2,
∴BF=BO=AB,即△ABO为等边三角形,∠BFA=∠BAF
∴∠BAO=∠OBA=60°,又∵∠OBA=∠BFA+∠BAF
∴∠BFA=∠BAF=30°
∴∠OAF=∠BAF+∠BAO=90°.
∴直线FA与⊙O相切.(8分)
如图,PA为圆的切线,A为切点,PBC为割线,∠APC的平分线交AB于点D,交AC于点E.
求证:(1)AD=AE;(2)AB•AE=AC•DB.
正确答案
解析
证明:(1)∵∠ADE=∠APD+∠PAD,∠AED=∠CPE+∠C,
又∠APD=∠CPE,∠PAD=∠C.
∴∠ADE=∠AED.
∴AD=AE.
(2)∵∠APB=∠CPA,∠PAB=∠C,
∴△APB∽△CPA,得 .
∵∠APE=∠BPD,∠AED=∠ADE=∠PDB,
∴△PBD∽△PEA,得 .
∴.
∴AB•AE=AC•DB.
如图,圆O的直径AB、BE为圆O的切线,点C为圆O上不同于A、B的一点,AD为∠BAC的平分线,且分别与BC交于H,与圆O交于D,与BE交于E,连结BD、CD.
(Ⅰ)求证:∠DBE=∠DBC;
(Ⅱ)若HE=2a,求ED.
正确答案
(Ⅰ)证明:∵BE为圆0的切线,BD为圆0的弦,∴根据弦切角定理知∠DBE=∠DAB…(2分)
由AD为∠DAB=∠DAC的平分线知∠DAB=∠DAC,
又∠DBC=∠DAC,∴∠DBC=∠DAB
∴∠DBE=∠DBC…(5分)
(Ⅱ)解:∵⊙O的直径AB
∴∠ADB=90°,
又由(1)得∠DBE=∠DBH,
∵HE=2a,
∴ED=a.
解析
(Ⅰ)证明:∵BE为圆0的切线,BD为圆0的弦,∴根据弦切角定理知∠DBE=∠DAB…(2分)
由AD为∠DAB=∠DAC的平分线知∠DAB=∠DAC,
又∠DBC=∠DAC,∴∠DBC=∠DAB
∴∠DBE=∠DBC…(5分)
(Ⅱ)解:∵⊙O的直径AB
∴∠ADB=90°,
又由(1)得∠DBE=∠DBH,
∵HE=2a,
∴ED=a.
如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于D,DE⊥AC交AC延长线于点E,OE交AD于点F.求证:ED是⊙O的切线.
正确答案
证明:连接OD,
∵OD=OA,
∴∠OAD=∠ADO,
∵∠EAD=∠BAD,
∴∠EAD=∠ADO,
∴OD∥AE,
∴∠AED+∠ODE=180°,
∵DE⊥AC,即∠AED=90°,
∴∠ODE=90°,
∴OD⊥DE,
∴DE是⊙O的切线.
解析
证明:连接OD,
∵OD=OA,
∴∠OAD=∠ADO,
∵∠EAD=∠BAD,
∴∠EAD=∠ADO,
∴OD∥AE,
∴∠AED+∠ODE=180°,
∵DE⊥AC,即∠AED=90°,
∴∠ODE=90°,
∴OD⊥DE,
∴DE是⊙O的切线.
如图,BC是半圆O的直径,点D是半圆上一点,过点D作⊙O切线AD,BA⊥DA于点A,BA交半圆于点E.已知BC=10,AD=4.那么直线CE与以点O为圆心,为半径的圆的位置关系是 ( )
正确答案
解析
解:连接OD交CE于F,则OD⊥AD.
又BA⊥DA,
∴OD∥AB.
∵OB=OC,
∴CF=EF,
∴OD⊥CE,
则四边形AEFD是矩形,得EF=AD=4.
连接OE.
在直角三角形OEF中,根据勾股定理得OF==3>
,
即圆心O到CE的距离大于圆的半径,则直线和圆相离.
故选A.
如图:已知圆上的弧
,过C点的圆的切线与BA的延长线交于E点,证明:
(Ⅰ)∠ACE=∠BCD.
(Ⅱ)BC2=BE•CD.
正确答案
解:(Ⅰ)因为,
所以∠BCD=∠ABC.
又因为EC与圆相切于点C,
故∠ACE=∠ABC
所以∠ACE=∠BCD.(5分)
(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,
所以△BDC~△ECB,
故.
即BC2=BE×CD.(10分)
解析
解:(Ⅰ)因为,
所以∠BCD=∠ABC.
又因为EC与圆相切于点C,
故∠ACE=∠ABC
所以∠ACE=∠BCD.(5分)
(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,
所以△BDC~△ECB,
故.
即BC2=BE×CD.(10分)
如图,在Rt△ABC中,已知∠ABC=90°,BC=6,以AB为直径作⊙O,连接OC,过点C作⊙O的切线CD,D为切点,若sin∠OCD=
,则直径AB=______.
正确答案
16
解析
解:连接OD,则OD⊥CD.
∵∠ABC=90°,∴CD、CB为⊙O的两条切线.
∴根据切线长定理得:CD=BC=6.
在Rt△OCD中,sin∠OCD=,
∴tan∠OCD=,OD=tan∠OCD×CD=8.
∴AB=2OD=16.
故答案为16.
如图,P是圆O外的一点,PD为切线,D为切点,割线PEF经过圆心O,PF=6,PD=2
,则∠DFP=______°.
正确答案
30
解析
解:连接OD,则OD垂直于切线,
根据切割线定理可得PD2=PE•PF,
∴PE=2,
∴圆的直径是4,
在直角三角形POD中,
OD=2,PO=4,
∴∠P=30°,
∴∠DEF=60°,
∴∠DFP=30°,
故答案为:30°
如图,直线AD与△ABC的外接圆相切于点A,若∠B=60°,则∠CAD等于( )
正确答案
解析
解:∵DA与△ABC的外接圆相切于点A,
由弦切角定理得:
∴∠CAD=∠B=60°.
故选B.
扫码查看完整答案与解析