- 函数性质的综合应用
- 共80题
设函数.
25.讨论函数在
内的单调性并判断有无极值,有极值时求出极值;
26.记,求函数
在
上的最大值D;
27.在(Ⅱ)中,取,求
满足
时的最大值.
正确答案
(Ⅰ)极小值为
解析
(Ⅰ),
.
,
.
因为,所以
.
①当时,函数
单调递增,无极值.
②当时,函数
单调递减,无极值.
③当,在
内存在唯一的
,使得
.
时,函数
单调递减;
时,函数
单调递增.
因此,,
时,函数
在
处有极小值
.
考查方向
解题思路
(Ⅰ)将代入
为
,
.
求导得,
.因为
,所以
.按
的范围分三种情况进行讨论:①当
时,函数
单调递增,无极值.②当
时,函数
单调递减,无极值.③当
,在
内存在唯一的
,使得
.
时,函数
单调递减;
时,函数
单调递增.因此,
,
时,函数
在
处有极小值
.
易错点
函数求导错误,分类讨论能力弱,计算能力弱
正确答案
解析
:
(Ⅱ)时,
,
当时,取
,等号成立,
当时,取
,等号成立,
由此可知,函数在
上的最大值为
.
考查方向
解题思路
当时,依据绝对值不等式可知
,从而能够得出函数
在
上的最大值为
.
易错点
绝对值不等式性质运用错误,计算错误,不会合理放缩不等式
正确答案
(Ⅲ)1.
解析
(Ⅲ),即
,此时
,从而
.
取,则
,并且
.
由此可知,满足条件
的最大值为1.
考查方向
解题思路
(Ⅲ)当,即
,此时
,从而
.依据式子特征取
,则
,并且
.由此可知,
满足条件
的最大值为1
易错点
平均值不等式的性质,计算能力弱
5. 已知点在函数
的图像上,则
的反函数
____________
正确答案
解析
,故
,
∴
∴
知识点
7. 方程在区间
上的解为________________
正确答案
解析
,即
∴
∴
∴
知识点
设函数,
的定义域均为
,且
是奇函数,
是偶函数,
,其中e为自然对数的底数.
24.求,
的解析式,并证明:当
时,
,
;
25.设,
,证明:当
时,
.
正确答案
(Ⅰ),
.证明:当
时,
,
,故
又由基本不等式,有,即
解析
(Ⅰ)由,
的奇偶性及
,①得:
②
联立①②解得,
.
当时,
,
,故
③
又由基本不等式,有,即
④
考查方向
解题思路
(Ⅰ)将等式中
用
来替换,并结合已知
是奇函数,
是偶函数可得
于是联立方程组即可求出
的表达式;当
时,由指数与指数函数的性质知
,
,进而可得到
然后再由基本不等式即可得出
易错点
导函数计算出错。
正确答案
(Ⅱ)由(Ⅰ)得
⑤
⑥
当时,
等价于
⑦
等价于
⑧于是设函数
,由⑤⑥,有
当
时,(1)若
,由③④,得
,故
在
上为增函数,从而
,即
,故⑦成立.(2)若
,由③④,得
,故
在
上为减函数,从而
,即
,故⑧成立.综合⑦⑧,得
.
解析
(Ⅱ)由(Ⅰ)得 , ⑤
, ⑥
当时,
等价于
, ⑦
等价于
⑧
设函数 ,由⑤⑥,有
当时,(1)若
,由③④,得
,故
在
上为增函数,从而
,即
,故⑦成立.(2)若
,由③④,得
,故
在
上为减函数,从而
,即
,故⑧成立.综合⑦⑧,得
.
考查方向
解题思路
(Ⅱ)由(Ⅰ)得,
.于是要证明
,即证
,也就是证明
,即证
于是构造函数
,利用导数在函数的单调性与极值中的应用即可得出结论成立.
易错点
计算量大。
设函数.
25.讨论的单调性;
26.证明当时,
;
27.设,证明当
时,
.
正确答案
(Ⅰ)当时,
单调递增;当
时,
单调递减;
解析
(I)由题设,的定义域为
,
,令
,解得
当时,
,
单调递增;当
时,
,
单调递减
考查方向
解题思路
(I)首先求出导函数,然后通过解不等式
或
可确定函数
的单调性
易错点
对利用导数研究函数的单调性和不等式的证明与解法理解出现错误、计算错误
正确答案
(Ⅱ)(II)由(I)知,在
处取得最大值,最大值为
,所以当
时,
,故当
时
,即
。
解析
(II)由(I)知,在
处取得最大值,最大值为
,所以当
时,
,故当
时
,即
。
考查方向
解题思路
(II)左端等式可利用(I)的结论证明,右端将左端的换为
即可证明;
易错点
对利用导数研究函数的单调性和不等式的证明与解法理解出现错误、计算错误
正确答案
(Ⅲ)(III)由题设,
,则
,令
解得;当
,
单调递增,当
,
,
单调递减,由(II)知,
,故
,又
,故当
时,
,所以当
时,
解析
(III)由题设,
,则
,令
解得;当
,
单调递增,当
,
,
单调递减,由(II)知,
,故
,又
,故当
时,
,所以当
时,
考查方向
解题思路
变形所证不等式构造新函数,然后通过利用导数研究函数的单调性来处理
易错点
对利用导数研究函数的单调性和不等式的证明与解法理解出现错误、计算错误
扫码查看完整答案与解析