热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 12 分

已知函数(其中).

25.如果函数有相同的极值点,求的值,并直接写出函数的单调区间;

26.令,讨论函数在区间上零点的个数。

第(1)小题正确答案及相关解析

正确答案

(1)

时,的递增区间为,,递减区间为

时,的递增区间为,递减区间为. ;

解析

(Ⅰ),则,

,得,而二次函数处有极大值,

所以,解得

时,的递增区间为,,递减区间为.

时,的递增区间为,递减区间为.

考查方向

本题主要考查利用导数研究函数的单调性,判断函数零点的个数等知识。意在考查考生的综合解决问题的能力和分类讨论的思想。

解题思路

先求导后得到原函数的极值点后结合二次函数即可求得a的值,后面利用常用的方法求单调区间;

易错点

不理解函数有相同的极值点导致无法求出a的值;

第(2)小题正确答案及相关解析

正确答案

(2)当时,函数有唯一零点;

时,函数有两不相等的零点。

解析

(Ⅱ)

,,

 当时,无实根,故的零点为,满足题意,

即函数有唯一零点

 当时,

,则的实数解为,故在区间上有唯一零点

,则的实数解为,故在区间上有两零点,

 当时,

,由于

此时在区间上有一实数解,故在区间上有唯一零点;

时,由于

时,数形结合可知在区间上有唯一实数解,

在区间上有唯一零点;

时,由于的对称轴为,故

所以在区间上有两个不等零点.

综上,当时,函数有唯一零点;

时,函数有两不相等的零点。

考查方向

本题主要考查利用导数研究函数的单调性,判断函数零点的个数等知识。意在考查考生的综合解决问题的能力和分类讨论的思想。

解题思路

按照判别式分类讨论各种情况下零点的个数。

易错点

不会确定分类的标准。

1
题型: 单选题
|
单选题 · 5 分

8.已知函数,.若图象上存在两个不同的点与图象上两点关于轴对称,则的取值范围为(  )

A

B

C

D

正确答案

D

解析

,由题意可知,设上必有两个负根,,设上不可能有两个负A根,可排除A,B, 上为增函数,(-1,0)上为减函数,F(-1)是极大值,F(-1)=-1<0, 不可能有两个负根排除答案C,所以选择D.

考查方向

考察函数图像的对称性,构造函数及用导数解决函数和零点问题

解题思路

先设点,后转化方程,得到一个方程有两个负根的问题,然后再构造一个新函数,运用导数来判断函数的有关零点问题

易错点

不能正确理解题目中的对称问题,进而在问题转化过程中进行不下去,对不同情况进行分类讨论不全

知识点

函数性质的综合应用函数图象的应用
1
题型:简答题
|
简答题 · 12 分

已知函数的图像在点处的切线为

27.求函数的解析式;

28.当时,求证:

29.若对任意的恒成立,求实数的取值范围;

第(1)小题正确答案及相关解析

正确答案

见解析

解析

,由已知解得,故

考查方向

利用导数求最值和极值;利用导数研究函数的图像特征;

解题思路

先根据导数的性质求切线的斜率,进而求出参数的值,得到函数的解析式,利用导数的性质作出函数大致图像,结合图像,利用分类讨论思想求K的取值范围.

易错点

求导错误,函数性质理解错误;分类讨论有重有漏

第(2)小题正确答案及相关解析

正确答案

见解析

解析

,    由

时,单调递减;当时,单调递增

,从而

考查方向

利用导数求最值和极值;利用导数研究函数的图像特征;

解题思路

先根据导数的性质求切线的斜率,进而求出参数的值,得到函数的解析式,利用导数的性质作出函数大致图像,结合图像,利用分类讨论思想求K的取值范围.

易错点

求导错误,函数性质理解错误;分类讨论有重有漏

第(3)小题正确答案及相关解析

正确答案

见解析

解析

对任意的恒成立对任意的恒成立

,∴由28题可知当时,恒成立令,得的增区间为,减区间为,∴实数的取值范围为

考查方向

利用导数求最值和极值;利用导数研究函数的图像特征;

解题思路

先根据导数的性质求切线的斜率,进而求出参数的值,得到函数的解析式,利用导数的性质作出函数大致图像,结合图像,利用分类讨论思想求K的取值范围.

易错点

求导错误,函数性质理解错误;分类讨论有重有漏

1
题型:简答题
|
简答题 · 15 分

对于函数,若存在区间,使得,则称函数为“可等域函数”,区间为函数的一个“可等域区间”.

已知函数.

18.是“可等域函数”,求函数的“可等域区间”;

若区间的“可等域区间”,求 的值.

第(1)小题正确答案及相关解析

正确答案

解析

解:(Ⅱ)

因为区间的“可等域区间,所以

考查方向

考察函数的新信息题,具体涉及到函数的定义域,值域,图像等性质

解题思路

先确定函数的值域,利用“可等域函数”, 结合函数的图象,可得函数        的“可等域区间”为

易错点

对新信息理解到位易出错,对函数的综合性质应用不熟练易出现,分类与解题逻辑上的错误,数形结合应用易出错

第(2)小题正确答案及相关解析

正确答案

解析

考查方向

考察函数的新信息题,具体涉及到函数的定义域,值域,图像等性质

解题思路

利用“可等域区间”的定义,得出a>0,结合图象,利用区间与对称轴的关系及函数的单调性求出a,b

易错点

对新信息理解到位易出错,对函数的综合性质应用不熟练易出现,分类与解题逻辑上的错误,数形结合应用易出错

1
题型: 单选题
|
单选题 · 5 分

11.已知函数定义在R上的奇函数,当时,,给出下列命题:

①当时,

②函数有2个零点

的解集为

,都有

其中正确命题个数是(   )

A

B2

C3

D4

正确答案

B

解析

因为f(x)为R上的奇函数,设x>0,-x<0,则,所以1错误,因为,所以f(x)有三个零点,所以2错误,,因为当

所以所以解集为,所以3正确。

同理判断4正确,所以选B

考查方向

函数的性质及应用;导数的综合应用;函数奇偶性的性质

解题思路

根据函数的相关性质,结合子题目,依次判断

易错点

求导错误;

知识点

函数性质的综合应用函数零点的判断和求解
下一知识点 : 函数的值
百度题库 > 高考 > 理科数学 > 函数性质的综合应用

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题