- 函数性质的综合应用
- 共80题
已知表示不小于
的最小整数,例如
.
27.设,
,若
,求实数
的取值范围;
28.设,
在区间
上的值域为
,集合
中元素的个数为
,求证:
;
29.设(
),
,若对于
,都有
,求实数
的取值范围.
正确答案
(1),
解析
(1)因为在区间
上单调递增,
所以
进而的取值集合为
由已知可知在
上有解,因此,
考查方向
解题思路
根据函数的单调性求出的取值集合为
,进而可得到答案;
易错点
1.错将能成立问题转化为恒成立问题处理;2.对于题中出现的字母太多导致无法入手。
正确答案
(2)略;
解析
(2)当时,
,
所以的取值范围为区间
进而在
上函数值的个数为
个,
由于区间与
没有共同的元素,
所以中元素个数为
,得
因此,
考查方向
解题思路
先根据题意确定,然后带入求出极限;
易错点
1.错将能成立问题转化为恒成立问题处理;2.对于题中出现的字母太多导致无法入手。
正确答案
解析
(3)由于,
所以,并且当
时取等号,
进而时,
由题意对任意,
恒成立.
当,
恒成立,因为
,所以
当,
恒成立,因为
,所以
综上,实数的取值范围为
.
考查方向
解题思路
先求出 ,进而分类确定a的取值范围。
易错点
1.错将能成立问题转化为恒成立问题处理;2.对于题中出现的字母太多导致无法入手。
10.已知且
,函数
设函数
的最大值为
,最小值为
,则 ( ).
正确答案
解析
设则
为奇函数,所以
所以
考查方向
解题思路
1.先将函数化简为两个奇函数和一个常数函数的和的形式;2.利用奇函数在对称的区间上单调性相同得到
后即可得到
。
易错点
1.不知道将函数转化为若干奇函数的和的形式,导致无法处理题中给出的函数;2.不知道
是奇函数,导致找不到解决问题的突破点。
知识点
15.对于函数给出定义:
设是函数
的导数,
是函数
的导数,若方程
有实数解
,则称点
为函数
的“拐点”.
某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.给定函数
,请你根据上面探究结果,计算
= .
正确答案
2016
解析
,
,
,得
.
,所以
的“拐点”即对称中心为
,所以
.
设,
则,
两式相加得.
考查方向
解题思路
1.先根据题中给出的信息求出的拐点;2.根据倒序相加法求出所求的式子的值。
易错点
1.不理解题中给出的新概念拐点是什么导致无法入手;2.不会根据对称中心转化为倒序相加求和。
知识点
已知函数.
27. 判断函数在
上的单调性;
28. 若恒成立, 求整数
的最大值;
29.求证:.
正确答案
(1)上是减函数;
解析
(Ⅰ)
上是减函数
考查方向
解题思路
直接求导后判断出后即可得到答案;
易错点
导后的函数不会变形为,导致不会判断其正负;
正确答案
3;
解析
(Ⅱ),即
的最小值大于
.
令,则
上单调递增,
又 ,
存在唯一实根
, 且满足
,
当时,
当
时,
∴,故正整数
的最大值是3
考查方向
解题思路
先分离参数后变为,下面求函数
的最小值即可;
易错点
无
正确答案
(3)略
解析
(Ⅲ)由(Ⅱ)知,∴
-
令, 则
∴
∴
考查方向
解题思路
根据第(2)问放缩,然后构造题中给出的不等式即可。
易错点
不会利用放缩法得到,进而导致没有思路求第(3)问。
12. 形如的函数因其图像类似于汉字中的“囧”字,故我们把其生动地称为“囧函数”.若函数
有最小值,则当
的值分别为方程
中的
时的“囧函数”与函数
的图像交点个数为( ).
正确答案
解析
令 ,则
是
与
复合函数,
,当
是增函数,
时有最小值,
所以 ;
,
所以 ,这时“囧函数”为
它与函数
与函数
在同一坐标系内的图象如图所示,图像交点个数为4 ,选C
考查方向
解题思路
1.先根据有最小值求出
;
2.根据“囧函数”的概念求出
3.在同一个坐标系下做出与函数
与函数的图象即可得到答案。
易错点
1.不理解题中给出的“囧函数”的概念;
2.不会处理复合函数函数导致a的范围求不出来。
知识点
扫码查看完整答案与解析