- 函数性质的综合应用
- 共80题
已知函数.
26.当时,求函数
的单调递减区间;
27.当时,设函数
. 若函数
在区间
上有两个零点,求实数
的取值范围.
正确答案
当时,
的单调递减区间为
,
;
当时,
的单调递减区间为
;
当时,
的单调递减区间为
,
.
解析
的定义域为
,
①当时,
. 由
得
或
. ∴当
,
时,
单调递减. ∴
的单调递减区间为
,
.
②当时,恒有
,∴
单调递减. ∴
的单调递减区间为
.
③当时,
. 由
得
或
.∴当
,
时,
单调递减. ∴
的单调递减区间为
,
.
综上,当时,
的单调递减区间为
,
;
当时,
的单调递减区间为
;
当时,
的单调递减区间为
,
.
考查方向
解题思路
解题步骤如下:先求函数的导数,根据导函数的正负来讨论原函数的单调性,但是要讨论的取值范围。
易错点
本题易在分类讨论和解含参数的不等式时发生错误 。
正确答案
的取值范围为
解析
在
上有零点,
即关于的方程
在
上有两个不相等的实数根.
令函数.则
.
令函数. 则
在
上有. 故
在
上单调递增.
,
当
时,有
即
.∴
单调递减;
当时,有
即
,∴
单调递增.
,
,
的取值范围为
考查方向
解题思路
解题步骤如下:要证有2个零点, 只需证明关于
的方程
,在
上有两个不相等的实数根,那么就需要构造函数,讨论其单调性,得到取值范围,从而得出结论。
易错点
本题不容易构造函数,讨论其单调性,求其范围,导致题目无法进行。
已知函数.
26.当时,求函数
的单调递减区间;
27.当时,设函数
. 若存在区间
,使得函数
在
上的值域为
,求实数
的
取值范围.
正确答案
当时,
的单调递减区间为
,
;
当时,
的单调递减区间为
;
当时,
的单调递减区间为
,
.
解析
【解析】的定义域为
,
①当时,
.由
得
或
. ∴ 当
,
时,
单调递减. ∴
的单调递减区间为
,
.
② 当时,恒有
,∴
单调递减. ∴
的单调递减区间为
.
③ 当时,
.由
得
或
. ∴当
,
时,
单调递减. ∴
的单调递减区间为
,
.
综上,当时,
的单调递减区间为
,
;
当时,
的单调递减区间为
;
当时,
的单调递减区间为
,
考查方向
解题思路
解题步骤如下:先求函数的导数,根据导函数的正负来讨论原函数的单调性,注意讨论的取值范围。
易错点
本题易在分类讨论和解含参数的不等式时发生错误 。
正确答案
的取值范围为
解析
当时,
,
,
.
当时,
,∴
在
上单调递增.
又在
上恒成立.
在
上单调递增.
由题意,得
原问题转化为关于的方程
在
上有两个不相等的实数根. ……9分
即方程在
上有两个不相等的实数根.
令函数.则
.
令函数.则
在
上有
.
故在
上单调递增.
,
当
时,有
即
.∴
单调递减;
当时,有
即
,∴
单调递增.
,
,
的取值范围为
考查方向
解题思路
解题步骤如下:根据函数在
上的值域为
,把原问题转化为关于
的方程
在
上有两个不相等的实数根. 只需证明关于
的方程
,在
上有两个不相等的实数根,那么就需要构造函数
,讨论其单调性,得到其取值范围,从而得出结论。
易错点
本题不容易构造函数,讨论其单调性,求其范围,导致题目无法进行。
12.已知函数,
,则
的取值范围为( )
正确答案
解析
(1).当m=0,n=0时,f(x)=,f(x)=0,所以{x| f(x)=0}={0};f(f(x))=
,{x| f(f(x))=0 }={0},符合题意,所以排除答案A、D.
(2).当m=0,n0时,f(x)=
+nx,{x| f(x)=0}={0,-n};令f(x)=0,解得
;令f(x)=
,即
+nx+n=0,(*),①若(*)无解,
0
,{x| f(f(x))=0 }={0,-4,-2},不符合题意,所以m+n
,所以排除答案C.所以选项为B.
考查方向
解题思路
根据函数的特点,从特殊值入手,(1).当m=0,n=0;当m=0,n0时,时,进行合理讨论,逐一排除。
易错点
不理解{x| f(x)=0}={x| f(f(x))=0 },导致问题无法切入。
知识点
已知函数.
25.若时,
恒成立,求
的取值范围;
26.若时,令
求证:
正确答案
m=0
解析
当时,
,欲使
即
恒成
立,
只要满足对
恒成立即可.
对于,即
令
则
所以函数
在
内单调递增,在
内单调递减.而
所以
.
对于即
,令
,
则令
则
所以在
内单调递减,则
从而
所以在
内单调递减,则
且当
时,
,所以
.
综上所述可得:.
考查方向
解题思路
利用条件,将不等式恒成立问题转化成只要满足对
恒成立,构造新函数,利用导数解决函数的最值,从而证明不等式恒成立
易错点
利用导数在处理单调区间及分类讨论上容易出错;
正确答案
证明见解析
解析
下面用数学归纳法证明
(1)当时,
,所以
所以,当
时命题成立
(2)假设时命题成立,即
要证明
时命题成立,即证明
只需证明即证明
由
当
时,易证
,所以
所以函数
在区间
上为增函数. 可证明函数
在
上为增函数,
由归纳假设得
所以
若则必有
,故现在证明
构造函数则
,易证
,
所以函数
在
上为增函数,
故即
则
由‚及题意知,即
.
综合知:对任意的
都有
成立
考查方向
解题思路
用分析法,从结论入手,考虑由于与正整数有关,可以用数学归纳法证明,在证明假设n=k,将转化为
所以考虑从函数的导数切入,函数f(x)在区间(1.+
)上为增函数.利用题中假设,由归纳假设
得
所以
若
则必有
,故现在证明
原函数易证在(1,+
为增函数,再由题中的假设,再构造新函数
得到
通过推理得出
,综上得证。
易错点
不容易考虑到用数学归纳法证明
已知函数.
23.求函数的单调区间;
24.当时,都有
成立,求
的取值范围;
25.试问过点可作多少条直线与曲线
相切?并说明理由.
正确答案
(1)当时,函数
的单调递增区间为
.当
时,函数
的单调递减区间为
,单调递增区间为
;
解析
试题分析:本题属于导数应用中的基本问题,题目的难度是逐渐由易到难,(1)利用导函数对分类求出单调区间;(2)要灵活运用“恒成立问题”解决的方法研究问题。(3)根据题意设出切点,再利用切点在曲线上构造方程去研究方程根的个数即切线条数。
(Ⅰ)函数的定义域为
.
.
(1)当时,
恒成立,函数
在
上单调递增;
考查方向
解题思路
本题考查导数的性质及其应用,解题步骤如下:
求出原函数的导函数,对分类求出
的单调区间。第二问利用第一问的结论对
分类求出
在
上的最小值,再根据恒成立问题完成结论。第三问属于“过点问题”,设切点为
,再利用切点的特点得到
,再把求切线方程条数问题转化为求方程的根的问题,最终构造函数模型完成即可。
易错点
第一问在对分类讨论求单调区间时由于比较繁琐而易出现错误。
第三问在利用导数研究 “过点问题”的切线方程求法上易出错。
正确答案
时,函数
在区间
上恒大于零;(3)当
时,过点P
存在两条切线;当
时,不存在过点P
的切线。
解析
试题分析:本题属于导数应用中的基本问题,题目的难度是逐渐由易到难,(1)利用导函数对分类求出单调区间;(2)要灵活运用“恒成立问题”解决的方法研究问题。(3)根据题意设出切点,再利用切点在曲线上构造方程去研究方程根的个数即切线条数。
(Ⅱ)由(Ⅰ)可知,
(1)当时,即
时,函数
在区间
上为增函数,
所以在区间上,
,显然函数
在区间
上恒大于零;
(2)当时,即
时,函数
在
上为减函数,在
上为增函数,所以.
依题意有,解得
,所以
.
(3)当时,即
时,
在区间
上为减函数,
所以.
依题意有,解得
,所以
.
综上所述,当时,函数
在区间
上恒大于零.………………8分
考查方向
解题思路
本题考查导数的性质及其应用,解题步骤如下:
求出原函数的导函数,对分类求出
的单调区间。第二问利用第一问的结论对
分类求出
在
上的最小值,再根据恒成立问题完成结论。第三问属于“过点问题”,设切点为
,再利用切点的特点得到
,再把求切线方程条数问题转化为求方程的根的问题,最终构造函数模型完成即可。
易错点
第一问在对分类讨论求单调区间时由于比较繁琐而易出现错误。
第三问在利用导数研究 “过点问题”的切线方程求法上易出错。
正确答案
当时,过点P
存在两条切线;当
时,不存在过点P
的切线。
解析
试题分析:本题属于导数应用中的基本问题,题目的难度是逐渐由易到难,(1)利用导函数对分类求出单调区间;(2)要灵活运用“恒成立问题”解决的方法研究问题。(3)根据题意设出切点,再利用切点在曲线上构造方程去研究方程根的个数即切线条数。
(Ⅲ)设切点为,则切线斜率
,
切线方程为.
因为切线过点,则
,即
.……①
令
,则
.
(1)当时,在区间
上,
,
单调递增;
在区间上,
,
单调递减,
所以函数的最大值为
.
故方程无解,即不存在
满足①式.
因此当时,切线的条数为
.
(2)当时, 在区间
上,
,
单调递减,
在区间上,
,
单调递增,
所以函数
的最小值为
.
取,则
.
故在
上存在唯一零点.
取,则
.
设,
,则
.
当时,
恒成立.
所以在
单调递增,
恒成立.所以
.
故在
上存在唯一零点.
因此当时,过点P
存在两条切线.
(3)当时,
,显然不存在过点P
的切线.
综上所述,当时,过点P
存在两条切线;
当时,不存在过点P
的切线.…………………………………………………13分
考查方向
解题思路
本题考查导数的性质及其应用,解题步骤如下:
求出原函数的导函数,对分类求出
的单调区间。第二问利用第一问的结论对
分类求出
在
上的最小值,再根据恒成立问题完成结论。第三问属于“过点问题”,设切点为
,再利用切点的特点得到
,再把求切线方程条数问题转化为求方程的根的问题,最终构造函数模型完成即可。
易错点
第一问在对分类讨论求单调区间时由于比较繁琐而易出现错误。
第三问在利用导数研究 “过点问题”的切线方程求法上易出错。
扫码查看完整答案与解析