- 三角函数的诱导公式及应用
- 共6354题
在△ABC中,角A、B、C所对的边分别为a,b,c,cos2A=1-3cosA.求角A.
正确答案
解:△ABC中,由cos2A=1-3cosA,可得2cos2A-1=1-3cosA,
求得cosA=0,或cosA= (舍去),
∴A=.
解析
解:△ABC中,由cos2A=1-3cosA,可得2cos2A-1=1-3cosA,
求得cosA=0,或cosA= (舍去),
∴A=.
已知函数.
(Ⅰ)求的值;
(Ⅱ)求函数f(x)的最小正周期及单调递增区间.
正确答案
解:(Ⅰ)因为=2sin2x+sin2x…(2分)
=1-cos2x+sin2x…(4分)
=…(6分)
所以.…(7分)
(Ⅱ)因为,所以,最小正周期等于
.…(9分)
又y=sinx的单调递增区间为,(k∈Z),…(10分)
所以令,…(11分)
解得…(12分)
所以函数f(x)的单调增区间为,(k∈Z).…(13分)
解析
解:(Ⅰ)因为=2sin2x+sin2x…(2分)
=1-cos2x+sin2x…(4分)
=…(6分)
所以.…(7分)
(Ⅱ)因为,所以,最小正周期等于
.…(9分)
又y=sinx的单调递增区间为,(k∈Z),…(10分)
所以令,…(11分)
解得…(12分)
所以函数f(x)的单调增区间为,(k∈Z).…(13分)
函数是( )
正确答案
解析
解:=cosx
∴函数是最小正周期为2π的偶函数
故选D.
已知且θ在第二象限,则sin2θ=( )
正确答案
解析
解:∵已知且θ在第二象限,∴cosθ=-
,
故sin2θ=2sinθcosθ=-,
故选A.
已知函数,其中x∈R,则下列结论中正确的是( )
正确答案
解析
解:
=1+cos2x-2×
=cos2x+cos(2x-)
=2cos(2x-)cos
=cos(2x-
),
∴函数的最大值为,故选项A错误;
将函数的图象左移
得到函数
y=sin2(x+
)=
sin(2x+
)的图象,
即为y=cos(2x+)的图象,故选项B错误;
∵ω=2,∴T==π,且由余弦函数为偶函数得到f(x)为偶函数,
故选项C正确;
根据余弦函数的图象与性质得:2x-=kπ,k∈Z,解得:x=
+
,
若x=是函数的对称轴,则有x=
+
=
,解得k=
,不合题意,
故选项D错误,
故选C
扫码查看完整答案与解析