- 三角函数的诱导公式及应用
- 共6354题
(1)已知tanx=-2,求下列各式的值:①;②2sin2x-3cos2x.
(2)求值:sin(-1071°)sin99°+sin(-171°)sin(-261°)-2sin(-420°)+tan(-330°).
正确答案
解:(1)∵已知tanx=-2,∴①=
=
=
,
②2sin2x-3cos2x==
=
=1.
(2)sin(-1071°)sin99°+sin(-171°)sin(-261°)-2sin(-420°)+tan(-330°)
=sin(-3×360°+9°)cos9°+sin(9°-180°)sin(-360°+99°)-2sin(-360°-60°)+tan(-360°+30°)
=sin9°cos9°-sin9°sin99°+2sin60°+tan30°=2sin60°+tan30°=+
=
.
解析
解:(1)∵已知tanx=-2,∴①=
=
=
,
②2sin2x-3cos2x==
=
=1.
(2)sin(-1071°)sin99°+sin(-171°)sin(-261°)-2sin(-420°)+tan(-330°)
=sin(-3×360°+9°)cos9°+sin(9°-180°)sin(-360°+99°)-2sin(-360°-60°)+tan(-360°+30°)
=sin9°cos9°-sin9°sin99°+2sin60°+tan30°=2sin60°+tan30°=+
=
.
sin150°-2cos120°+3tan2390°-cos2225°=______.
正确答案
解析
解:原式=sin30°+2cos60°+3tan230°-cos245°
=+
-
=.
故答案为:.
下列函数中最小正周期不为π的是( )
正确答案
解析
解:∵f(x)=sinx•cosx=sin2x,
∴其周期T==π,故可排除A;
又g(x)=tan(x+),
∴其周期T==π,故可排除B;
又f(x)=sin2x-cos2x=-cos2x,
∴其周期T==π,故可排除C;
∵ϕ(x)=sinx+cosx=sin(x+
),
∴其周期T==2π≠π,故D符合题意.
故选D.
已知,则 tan2α=( )
正确答案
解析
解:∵cos(α+)=
α∈(0,π)
∴α+=
解得α=
∴tan2α=tan=
故选:A.
设sinx-cosx=2sin(x+θ),其中0<θ<2π,则θ的值为______.
正确答案
解析
解:sinx-cosx=2(
sinx-
cosx)=2sin(x-
)=2sin(x+θ),
∴θ=2kπ-,k∈Z,
∵0<θ<2π,
∴θ=.
故答案为:.
扫码查看完整答案与解析