热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 18 分

如图所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距l=0.5 m,左端接有阻值R=0.3 Ω的电阻,一质量m=0.1 kg,电阻r=0.1 Ω的金属棒MN放置在导轨上,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度B=0.4 T,棒在水平向右的外力作用下,由静止开始以a=2 m/s2的加速度做匀加速运动,当棒的位移x=9 m时撤去外力,棒继续运动一段距离后停下来,已知撤去外力前后回路中产生的焦耳热之比Q1∶Q2=2∶1,导轨足够长且电阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保持良好接触,求

(1)棒在匀加速运动过程中,通过电阻R的电荷量q;

(2)撤去外力后回路中产生的焦耳热Q2

(3)外力做的功WF

正确答案

(1)4.5 C 

(2)1.8 J 

(3)5.4 J

解析

(1)设棒匀加速运动的时间为t,回路的磁通量变化量为Φ,回路中的平均感应电动势为,由法拉第电磁感应定律得

其中Φ=Blx②

设回路中的平均电流为,由闭合电路的欧姆定律得

则通过电阻R的电荷量为

联立①②③④式,代入数据得q=4.5 C⑤

(2)设撤去外力时棒的速度为v,对棒的匀加速运动过程,由运动学公式得v2=2ax⑥

设棒在撤去外力后的运动过程中安培力做功为W,由动能定理得W=0-mv2

撤去外力后回路中产生的焦耳热

Q2=-W⑧

联立⑥⑦⑧式,代入数据得

Q2=1.8 J⑨

(3)由题意知,撤去外力前后回路中产生的焦耳热之比Q1∶Q2=2∶1,可得Q1=3.6 J⑩

在棒运动的整个过程中,由功能关系可知WF=Q1+Q2

由⑨⑩⑪式得WF=5.4 J。

知识点

法拉第电磁感应定律电磁感应中的能量转化
1
题型:简答题
|
简答题 · 16 分

如图1所示,匀强磁场的磁感应强度B为0.5T,其方向垂直于倾角θ为300的斜面向上。绝缘斜面上固定有“Λ”形状的光滑金属导轨MPN(电阻忽略不计),MP和NP长度均为2.5m。MN连线水平。长为3m。以MN的中点O为原点、OP为x轴建立一坐标系Ox。一根粗细均匀的金属杆CD,长度d为3m,质量m为1kg,电阻R为0.3Ω,在拉力F的作用下,从MN处以恒定的速度v=1m/s在导轨上沿x轴正向运动(金属杆与导轨接触良好)。g取10m/s2

(1)求金属杆CD运动过程中产生的感应电动势E及运动到x=0.8m电势差UCD

(2)推导金属杆CD从MN处运动到P点过程中拉力F与位置坐标x的关系式,并在图2中画出F-x关系图象;

(3)求金属杆CD从MN处运动到P点的全过程产生的焦耳热。

正确答案

(1)1.5V  -0.6V  (2) ,如图 (3)7.5J

解析

(1)金属杆CD在匀速运动中产生的感应电动势

  (D点电势高)

当x=0.8m时,金属杆在导轨间的电势差为零。设此时杆在导轨外的长度为,则

由楞次定律判断D点电势高,故CD两端电势差

(2)杆在导轨间的长度l与位置x关系是 

对应的电阻Rl为       电流 

杆受安培力F为 

根据平衡条件得  

画出的F-x图象如图所示。

(3)外力F所做的功WF等于F-x图线下所围成的面积,即

而杆的重力势能增加量

故全过程产生的焦耳热

知识点

感生电动势、动生电动势电磁感应中的能量转化
1
题型:简答题
|
简答题 · 15 分

如图,两根足够长的金属导轨ab、cd竖直放置,导轨间距离为L,电阻不计。在导轨上端并接两个额定功率均为P、电阻均为R的小灯泡。整个系统置于匀强磁场中,磁感应强度方向与导轨所在平面垂直。现将一质量为m、电阻可以忽略的金属棒MN从图示位置由静止开始释放。金属棒下落过程中保持水平,且与导轨接触良好。已知某时刻后两灯泡保持正常发光。重力加速度为g。求:

(1)磁感应强度的大小;

(2)灯泡正常发光时导体棒的运动速率。

正确答案

(1)设小灯泡的额定电流I0,有:P=I02R①

由题意,在金属棒沿着导轨竖直下落的某时刻后,小灯泡保持正常发光,流经MN的电流为 I=2I0

此时刻金属棒MN所受的重力和安培力相等,下落的速度达到最大值,有 mg=BLI③

联立①②③式得

(2)设灯泡正常发光时,导体棒的速率为v,由电磁感应定律与欧姆定律得

E=BLv⑤

E=RI0

联立①②④⑤⑥式得 v=

解析

略。

知识点

法拉第电磁感应定律电磁感应中的能量转化
1
题型: 单选题
|
单选题 · 6 分

如图所示,水平地面上方矩形区域内存在垂直纸面向里的匀强磁场,两个边长相等的单匝闭合正方形线圈Ⅰ和Ⅱ,分别用相同材料,不同粗细的导线绕制(Ⅰ为细导线)。两线圈在距磁场上界面高处由静止开始自由下落,再进入磁场,最后落到地面。运动过程中,线圈平面始终保持在竖直平面内且下边缘平行于磁场上边界。设线圈Ⅰ、Ⅱ落地时的速度大小分别为v1、v2,在磁场中运动时产生的热量分别为Q1、Q2。不计空气阻力,则

Av1 <v2,Q1< Q2          

Bv1 =v2,Q1= Q2

Cv1 <v2,Q1>Q2          

Dv1 =v2,Q1< Q2

正确答案

D

解析

由于从同一高度下落,到达磁场边界时具有相同的速度v,切割磁感线产生感应电流同时受到磁场的安培力,又(ρ为材料的电阻率,为线圈的边长,S为单匝导线横截面积),所以安培力,此时加速度,且(为材料的密度),所以加速度是定值,线圈Ⅰ和Ⅱ同步运动,落地速度相等v1 =v2。由能量守恒可得:,(H是磁场区域的高度),Ⅰ为细导线m小,产生的热量小,所以Q1< Q2。正确选项D。

知识点

电磁感应中的能量转化
1
题型:简答题
|
简答题 · 15 分

如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L,长为3d,导轨平面与水平面的夹角为θ,在导轨的中部刷有一段长为d的薄绝缘涂层。匀强磁场的磁感应强度大小为B,方向与导轨平面垂直。质量为m的导体棒从导轨的顶端由静止释放,在滑上涂层之前已经做匀速运动,并一直匀速滑到导轨底端。导体棒始终与导轨垂直,且仅与涂层间有摩擦,接在两导轨间的电阻为R,其他部分的电阻均不计,重力加速度为g。求:

(1)导体棒与涂层间的动摩擦因数μ;

(2)导体棒匀速运动的速度大小v;

(3)整个运动过程中,电阻产生的焦耳热Q。

正确答案

答案:(1)(2)(3)

解析

(1)在绝缘涂层上

受力平衡

解得

(2)在光滑导轨上

感应电动势   感应电流

安培力  受力平衡

解得

(3)摩擦生热

能量守恒定律

解得

知识点

通电直导线在磁场中受到的力电磁感应中的能量转化
下一知识点 : 自感现象和互感现象
百度题库 > 高考 > 物理 > 电磁感应中的能量转化

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题