- 双曲线的几何性质
- 共199题
本题共有2个小题,第1小题满分6分,第2小题满分8分.
双曲线的左、右焦点分别为F1、F2,直线l过F2且与双曲线交于A、B两点.
23.若l的倾斜角为,
是等边三角形,求双曲线的渐近线方程;
24.设若l的斜率存在,且|AB|=4,求l的斜率.
正确答案
双曲线的渐近线方程为
解析
解:设.
由题意,,
,
,
因为是等边三角形,所以
,
即,解得
.
故双曲线的渐近线方程为.
考查方向
解题思路
利用等边三角形的性质和双曲线中,得到参数
的关系,求出参数
易错点
弦长的运算
正确答案
斜率为.
解析
解:
由已知,.
设,
,直线
.
由,得
.
因为与双曲线交于两点,所以
,且
.
由,
,得
,
故,
解得,故
的斜率为
.
考查方向
解题思路
联立方程组,根据弦长公式求出斜率.
易错点
弦长的运算
3.在平面直角坐标系中,双曲线
的焦距是 .
正确答案
;
解析
,因此焦距为
.
考查方向
解题思路
根据双曲线的性质以及求解。
易错点
双曲线中,不要与椭圆中的关系混淆。
知识点
5. 设F为抛物线C:y2=4x的焦点,曲线y=(k>0)与C交于点P,PF⊥x轴,则k=( )
正确答案
解析
因为抛物线的焦点
,又因为曲线
与
交于点
,
轴,x=1代入抛物线,所以点P(1,2)代入
,
,所以
,故选D.
考查方向
解题思路
抛物线方程有四种形式,注意焦点的位置. 求解焦点,公共点的坐标同时满足两个方程,
易错点
x=1代入抛物线可以求出两个y,根据范围正确取舍。
知识点
16.已知曲线在点
处的切线与曲线
相切,则a= .
正确答案
8
解析
由可得曲线
在点
处的切线斜率为2,故切线方程为
,与
联立得
,显然
,所以由
.
考查方向
解题思路
求曲线在某点处的切线方程的方法是:求出函数在该点处的导数值即为切线斜率,然后用点斜式就可写出切线方程.而直线与抛物线相切则可以通过判别式来解决,本题将导数的几何意义与二次函数交汇在一起进行考查,具有小题综合化的特点.
易错点
导数几何意义的理解运用
知识点
3.若双曲线 的左、右焦点分别为
,点
在双曲线
上,且
,则
等于( )
正确答案
解析
由双曲线定义得,即
,解得
,故选B.
考查方向
解题思路
确定P在双曲线的左支上,由双曲线的定义可得结论。
易错点
计算能力弱,双曲线焦点坐标不会求
知识点
扫码查看完整答案与解析