- 与圆有关的比例线段
- 共1078题
如图,直线PA为圆O的切线,切点为A,直径BC⊥OP,连接AB交PO于点D.
(1)证明:PA=PD;
(2)求证:PA•AC=AD•OC.
正确答案
(1)证明:连结AC,
∵直径BC⊥OP,连接AB交PO于点D,BC是直径,
∴∠C+∠B=90°,∠ODB+∠B=90°,
∴∠C=∠ODB,
∵直线PA为圆O的切线,切点为A,
∴∠C=∠BAP,
∵∠ADP=∠ODB,∴∠BAP=∠ADP,
∴PA=PD.
(2)连结OA,由(1)得∠PAD=∠PDA=∠ACO,
∵∠OAC=∠ACO,∴△PAD∽△OCA,
∴,∴PA•AC=AD•OC.
解析
(1)证明:连结AC,
∵直径BC⊥OP,连接AB交PO于点D,BC是直径,
∴∠C+∠B=90°,∠ODB+∠B=90°,
∴∠C=∠ODB,
∵直线PA为圆O的切线,切点为A,
∴∠C=∠BAP,
∵∠ADP=∠ODB,∴∠BAP=∠ADP,
∴PA=PD.
(2)连结OA,由(1)得∠PAD=∠PDA=∠ACO,
∵∠OAC=∠ACO,∴△PAD∽△OCA,
∴,∴PA•AC=AD•OC.
(文科)如图,已知PA与圆O相切于点A,半径OB⊥OP,AB交PO于点C.
(Ⅰ)求证:PA=PC;
(Ⅱ)若圆O的半径为3,OP=5,求BC的长度.
正确答案
解析
证明:(I)∵PA与圆O相切于点A,
∴∠PAB=∠ADB
∵BD为圆O的直径,
∴∠BAD=90°
∴∠ADB=90°-∠B
∵BD⊥OP,
∴∠BCO=90°-∠B
∴∠BCO=∠PCA=∠PAB
即△PAC为等腰三角形
∴PA=PC;
(Ⅱ)解:由题意得 Rt△AOP中,cos∠AOP==
,cos
=
,sin
=
;
∴∠AOB=+∠AOP,
∴等腰三角形AOB中,∠OBC==
-
,
由和差角公式得:cos∠OBC=.
在Rt△BOC中,BC==
=
.
如图,PA是圆的切线,A为切点,PBC是圆的割线,且BC=3PB,则=______.
正确答案
解析
解:由切割线定理可知:PA2=PB•PC,又BC=3PB,
可得PA=2PB,
在△PAB与△PAC中,∠P=∠P,∠PAB=∠PCA(同弧上的圆周角与弦切角相等),
可得△PAB∽△PAC,
∴=
=
.
故答案为:.
(2016•九江一模)如图,已知AB是圆O的直径,C、D是圆O上的两个点,CE⊥AB于E,BD交AC于G,交CE于F,CF=FG.
(Ⅰ)求证:C是劣弧的中点;
(Ⅱ)求证:BF=FG.
正确答案
解:(I)∵CF=FG
∴∠CGF=∠FCG
∴AB圆O的直径
∴
∵CE⊥AB
∴
∵
∴∠CBA=∠ACE
∵∠CGF=∠DGA
∴
∴∠CAB=∠DAC
∴C为劣弧BD的中点(5分)
(II)∵
∴∠GBC=∠FCB
∴CF=FB
同理可证:CF=GF
∴BF=FG(10分)
解析
解:(I)∵CF=FG
∴∠CGF=∠FCG
∴AB圆O的直径
∴
∵CE⊥AB
∴
∵
∴∠CBA=∠ACE
∵∠CGF=∠DGA
∴
∴∠CAB=∠DAC
∴C为劣弧BD的中点(5分)
(II)∵
∴∠GBC=∠FCB
∴CF=FB
同理可证:CF=GF
∴BF=FG(10分)
如图,在△ABC中,AB=AC=4,BC=6,以AB为直径的圆交BC于点D,过点D作该圆的切线,交AC于点E,则CE=( )
正确答案
解析
解:连结AD,OD,根据题意,得AB=AC=5;
∵AB是直径,
∴AD⊥BC,
∴BD=CD=3,
又BO=OA,∴DO∥CA,
DE是圆的切线,∴DE⊥OD,
∴DE⊥AC,
在直角三角形ADC中,DC2=CE•CA,
即32=4CE,
∴CE=,
故选B.
扫码查看完整答案与解析