- 与圆有关的比例线段
- 共1078题
如图,已知⊙O1与⊙O2外切于点A,⊙O1的弦BC的延长线切⊙O2于点D,BA交⊙O2于点E,求证:∠CAD=∠DAE.
正确答案
证明:过点A作两圆的公切线GF交BD于G,延长DA交⊙O1于H,连接BH,
则∠ADC=∠FAC,∠H=∠BAG,
∵∠BAG=∠FAC,
∴∠H=∠ADC,
根据圆内接四边形的性质可知:∠H=∠DEA,
∴∠DEA=∠ADC,
又∵AE:AD=ED:DC,
∴△AED∽△ADC,
∴∠CAD=∠DAE.
解析
证明:过点A作两圆的公切线GF交BD于G,延长DA交⊙O1于H,连接BH,
则∠ADC=∠FAC,∠H=∠BAG,
∵∠BAG=∠FAC,
∴∠H=∠ADC,
根据圆内接四边形的性质可知:∠H=∠DEA,
∴∠DEA=∠ADC,
又∵AE:AD=ED:DC,
∴△AED∽△ADC,
∴∠CAD=∠DAE.
如图,△ABC中AB=AC,∠ABC=72°,圆O过A,B且与BC切于B点,与AC交于D点,连BD.若BC=2,则AC=______.
正确答案
1+
解析
解:∵AB=AC,∠C=72°,BC是⊙O的切线,
∴∠CBD=∠BAC=36°,
∴∠ABD=36°,
∴∠BDC=∠BCD=72°,
∴AD=BD=BC;
又∵BC是切线,
∴BC2=CD•AC,
∴BC2=(AC-BC)•AC
设AC=x,则可得到:(x-2)x=4,
∴x2-2x-4=0
解得:x1=1+,x2=1-
(x2<0不合题意,舍去).
∴AC=1+.
故答案为:1+.
如图,一个半径为1的球O放在桌面上,桌面上的一点A1的正上方有一光源A,AA1与球相切,AA1=3,球在桌面上的投影是一个椭圆C,记椭圆C的四个顶点分别为A1、A2、B1、B2.则对于下列的命题:
①若点P为椭圆C上的一个动点,则tan∠OAP=;
②椭圆C的长轴长为4;
③若沿直线B1B2的方向为主视方向,则几何体A-A1B1A2B2的左视图的面积为3;
④椭圆C的离心率为
其中真命题的序号为______.(写出所有真命题的序号)
正确答案
①②④
解析
解如图是过锥体的轴与椭圆长轴A1A2的截面,根据圆锥曲线的定义,
可得球与长轴A1A2的切点是椭圆的焦点F,OE=OF=1,A1E=A1F=1,AA1=3,
AE=2,AD=2,
对于①,tan∠OAP=tan∠OAD==
,故①对;
对于②,tan∠A1AA2=tan2∠OAD==
,
A1A2=AA1•tan∠A1AA2=3×=4,故②对;
对于③由于2a=4,a=2,a-c=1,c=1,b2=a2-c2=3,b=,
若沿直线B1B2的方向为主视方向,则几何体A-A1B1A2B2的左视图的面积为×3×2
=3
,故③错;
对于④椭圆C的离心率为e==
,故④对.
故答案为:①②④.
在60°的二面角内放入一个球,球与该二面角的两个半平面分别切于两点A,B,且A、B两点的球面距离为2πcm,则该球的半径为 ______cm..
正确答案
3
解析
解:设求心为0,由A,B分别向二面角的棱做垂线垂足为P,则∠APB=60°,
则∠AOB=120°,设求的半径为r
则A、B两点的球面距离为•2πr=2π,r=3
故答案为:3
如图所示,已知D为△ABC的BC边上一点,⊙O1经过点B,D,交AB于另一点E,⊙O2经过点C,D,交
AC于另一点F,⊙O1与⊙O2交于点G.
(1)求证:∠EAG=∠EFG;
(2)若⊙O2的半径为5,圆心O2到直线AC的距离为3,AC=10,AG切⊙O2于G,求线段AG的长.
正确答案
解:(1)连接GD,因为四边形BDGE,CDGF分别内接于⊙O1,⊙O2,
∴∠AEG=∠BDG,∠AFG=∠CDG,
又∠BDG+∠CDG=180°,∴∠AEG+∠AFG=180°.
即A,E,G,F四点共圆,∴∠EAG=∠EFG.
(2)因为⊙O2的半径为5,圆心O2到直线AC的距离为3,
所以由垂径定理知FC=2=8,又AC=10,
∴AF=2,∵AG切⊙O2于G,∴AG2=AF•AC=2×10=20,AG=2.
解析
解:(1)连接GD,因为四边形BDGE,CDGF分别内接于⊙O1,⊙O2,
∴∠AEG=∠BDG,∠AFG=∠CDG,
又∠BDG+∠CDG=180°,∴∠AEG+∠AFG=180°.
即A,E,G,F四点共圆,∴∠EAG=∠EFG.
(2)因为⊙O2的半径为5,圆心O2到直线AC的距离为3,
所以由垂径定理知FC=2=8,又AC=10,
∴AF=2,∵AG切⊙O2于G,∴AG2=AF•AC=2×10=20,AG=2.
扫码查看完整答案与解析