- 与圆有关的比例线段
- 共1078题
如图所示,过圆外一点P分别做圆的切线和割线交圆于点A和点B,且PB=3,C是圆上一点,BC=2,∠BAC=∠APB,则AB=______.
正确答案
解析
解:∵∠BAC=∠APB,
∠C=∠BAP,
∴△PAB∽△ACB,
∴=
∴AB2=PB•BC=3×2=6,
∴AB=,
故答案为:.
如图,△ABC为圆的内接三角形,BD为圆的弦,且BD∥AC. 过点A作圆的切线与DB的延长线交于点E,AD与BC交于点F.若AB=AC,AE=3
,BD=4则线段AF的长为______.
正确答案
解析
解:∵AB=AC,AE=3,BD=4,
梯形ABCD中,AC∥BD,BD=4,
由切割线定理可知:AE2=EB•ED=EB(EB+BD),
即45=BE(BE+4),解得EB=5,
∵AC∥BD,∴AC∥BE,
∵过点A作圆的切线与DB的延长线交于点E,
∴∠BAE=∠C,
∵AB=AC,∴∠ABC=∠C,
∴∠ABC=∠BAE,∴AE∥BC,
∴四边形AEBC是平行四边形,
∴EB=AC,∴AC=AB=BE=5,
∴BC=AE=3,
∵△AFC∽△DFB,∴=
,即
=
,
解得CF=.
故答案为:.
(2016•莆田一模)如图所示,AC为⊙O的直径,D为
的中点,E为BC的中点.
(Ⅰ)求证:DE∥AB;
(Ⅱ)求证:AC•BC=2AD•CD.
正确答案
证明:(Ⅰ)连接BD,因为D为
的中点,所以BD=DC.
因为E为BC的中点,所以DE⊥BC.
因为AC为圆的直径,所以∠ABC=90°,
所以AB∥DE.…(5分)
(Ⅱ)因为D为的中点,所以∠BAD=∠DAC,
又∠BAD=∠DCB,则∠DAC=∠DCB.
又因为AD⊥DC,DE⊥CE,所以△DAC∽△ECD.
所以=
,AD•CD=AC•CE,2AD•CD=AC•2CE,
因此2AD•CD=AC•BC.…(10分)
解析
证明:(Ⅰ)连接BD,因为D为
的中点,所以BD=DC.
因为E为BC的中点,所以DE⊥BC.
因为AC为圆的直径,所以∠ABC=90°,
所以AB∥DE.…(5分)
(Ⅱ)因为D为的中点,所以∠BAD=∠DAC,
又∠BAD=∠DCB,则∠DAC=∠DCB.
又因为AD⊥DC,DE⊥CE,所以△DAC∽△ECD.
所以=
,AD•CD=AC•CE,2AD•CD=AC•2CE,
因此2AD•CD=AC•BC.…(10分)
如图,设△ABC的外接圆的切线AE与BC的延长线交于点E,∠BAC的平分线与
BC交于点D.求证:
(1)∠ADE=∠DAC
(2)ED2=EC•EB.
正确答案
证明:(1)∵AE是圆的切线,∴∠ABC=∠CAE.
∵AD是∠BAC的平分线,∴∠BAD=∠CAD,
从而∠ABC+∠BAD=∠CAE+∠CAD.
∵∠ADE=∠ABC+∠BAD,∠DAE=∠CAD+∠CAE,
∴∠ADE=∠DAE;
(2)由(1)得EA=ED.
∵AE是圆的切线,∴由切割线定理,得EA2=EC•EB.
结合EA=ED,得ED2=EC•EB.
解析
证明:(1)∵AE是圆的切线,∴∠ABC=∠CAE.
∵AD是∠BAC的平分线,∴∠BAD=∠CAD,
从而∠ABC+∠BAD=∠CAE+∠CAD.
∵∠ADE=∠ABC+∠BAD,∠DAE=∠CAD+∠CAE,
∴∠ADE=∠DAE;
(2)由(1)得EA=ED.
∵AE是圆的切线,∴由切割线定理,得EA2=EC•EB.
结合EA=ED,得ED2=EC•EB.
如图,AB是圆O的直径,CD与圆O相切于点D,AB=8,BC=1,则CD=______;AD=______.
正确答案
3
解析
解:∵CD与圆O相切于点D,AB=8,BC=1,
∴由切割线定理可得CD2=CB•CA=1×9,
∴CD=3;
连接OD,则OD⊥DC,
∴cos∠COD=,
∴cos∠AOD=-,
∴AD==
.
故答案为:3,.
扫码查看完整答案与解析