- 数列
- 共2062题
19. 已知单调递增的等比数列满足
,且
是
的等差中项.
(I)求数列的通项公式;
(II)设,其前n项和为
,若
对于
恒成立,求实数m的取值范围.
正确答案
(1);
(2)
解析
试题分析:本题属于数列应用中的基本问题,题目的难度是逐渐由易到难,直接按照步骤来求
(Ⅰ)设等比数列的首项为
,公比为
由题意可知:,
∴
所以.得
(Ⅱ)令
相减得
若对于
恒成立,即
恒成立,即
令则可知其为减函数,故
考查方向
解题思路
本题考查数列的性质,解题步骤如下:
1、利用基本量法求出通项;
2、利用错位相减法求和,恒成立问题转为最值问题
易错点
第一问中的辅助角容易计算错误
知识点
20.设数列共有
项,记该数列前
项
中的最大项为
,该数列后
项
中的最小项为
,
.
(1)若数列的通项公式为
,求数列
的通项公式;
(2)若数列满足
,
,求数列
的通项公式;
(3)试构造一个数列,满足
,其中
是公差不为零的等差数列,
是等比数列,使得对于任意给定的正整数
,数列
都是单调递增的,并说明理由.
正确答案
(1),
.
(2),
.
(3)
解析
试题分析:本题属于数列综合问题,题目的难度是逐渐由易到难,(1)(2)直接按照单调数列定义来求(3)构造新数列时,要把握问题的本质。
(1)因为单调递增,所以
,
,
所以,
.
(2)根据题意可知,,
,因为
,所以
可得即
,又因为
,所以
单调递增,
则,
,所以
,即
,
,
所以是公差为2的等差数列,
,
.
(3)构造,其中
,
.
下证数列满足题意.
证明:因为,所以数列
单调递增,
所以,
,
所以,
,
因为,
所以数列单调递增,满足题意.
考查方向
解题思路
解决等差数列与等比数列的综合问题,关键是理清两个数列的关系。解综合问题的成败在于审清题意,通过给定信息的表象,抓住问题的本质,揭示问题的内在联系与隐含条件。
易错点
1、数列单调性的巧妙运用。
2、第三问中构造不正确得不到正确结论。
知识点
17.已知数列为等差数列,
;数列
为公比为
的等比数列,且满足集合
.
(Ⅰ)求数列,
的通项公式;
(Ⅱ)求数列的前
项和
.
正确答案
(1),
;(2)
解析
试题分析:本题属于数列中的基本问题,题目的难度不大,(1)直接按照步骤来求(2)利用求和公式来解.
(Ⅰ)设等差数列的首项和公差分别为: ∴
解得 ∴
∵等比数列
成公比大于1的等比数列且
∴ ∴
∴
(Ⅱ)
=+
= .
考查方向
解题思路
本题考查等差数列和等比数列以及数列的求和,解题步骤如下:
用待定系数法构造关于首项和公差公比的方程组。
等差等比的求和公式。
易错点
第2问不知道分组求和。
知识点
已知等差数列满足
=2,前3项和
=
.
16.求的通项公式,
17.设等比数列满足
=
,
=
,求
前n项和
.
正确答案
(Ⅰ).
解析
试题分析:(Ⅰ)由已知及等差数列的通项公式和前n项和公式可得关于数列的首项a1和公式d的二元一次方程组,解此方程组可求得首项及公差的值,从而可写出此数列的通项公式.
试题解析: (1)设的公差为
,则由已知条件得
化简得
解得
故通项公式,即
.
考查方向
解题思路
本题考查等差数列的概念、通项公式及前n项的求和公式,利用方程组思想求解.本题属于基础题.
易错点
等差数列性质的运用
正确答案
.
解析
试题分析: (Ⅱ)由(Ⅰ)的结果可求出b1和b4的值,进而就可求出等比数列的公比,再由等比数列的前n项和公式即可求得数列
前n项和
.(2)由(1)得
.
设的公比为q,则
,从而
.
故的前n项和
.
考查方向
解题思路
本题考查等比数列的概念、通项公式及前n项的求和公式,利用方程组思想求解.本题属于基础题.
易错点
注意运算的准确性
18.已知等比数列
的公比
,且
成等差数列,数列
满足:
.
(I)求数列和
的通项公式;
(II)若恒成立,求实数m的最小值.
正确答案
见解析
解析
考查方向
解题思路
1)借助等差数列性质求出
2)利用由与
的关系求通项
的方法求出
并确定
3)对移项得到新数列
4)讨论新数列单调性,并求出最值
易错点
本题第一问忽略验证,第二问数列的单调性判断不出
知识点
6.已知等差数列的公差为
,若
成等比数列,那么
等于 ___________;
正确答案
2
解析
设,
+2,
+6 由
成等比数列,得:(
+2)2=
(
+6),
=2
考查方向
解题思路
本题考查运用等差数列及等比数列性质求首项,解题步骤如下:设,
+2,
+6 由
成等比数列,得:(
+2)2=
(
+6),
=2
易错点
本题必须注意审题,忽视则会出现错误。
知识点
正确答案
知识点
扫码查看完整答案与解析