热门试卷

X 查看更多试卷
1
题型: 单选题
|
单选题 · 5 分

1.一个学校的教师具有高级职称的人数为160,具有中级职称的人数为320,具有初级职称的人数为200,其余人员人数为80。采用分层抽样的方法,从中抽取38人作为职工代表参加教代会。则从上述各层中依次抽取的人数分别是(    )

A12,16,15,9

B8,12,12,7

C8,5,12,5

D8,16,10,4

正确答案

D

解析

教师总人数为160+320+200+80=760,因为=,所以各层中依次抽取的人数分别是=8, =16, =10, =4.

知识点

分层抽样方法
1
题型: 单选题
|
单选题 · 5 分

1.一个学校的教师具有高级职称的人数为160,具有中级职称的人数为320,具有初级职称的人数为200,其余人员人数为80.采用分层抽样的方法,从中抽取38人作为职工代表参加教代会.则从上述各层中依次抽取的人数分别是(     )

A12,16,15,9

B8,12,12,7

C8,5,12,5

D8,16,10,4

正确答案

D

解析

教师总人数为160+320+200+80=760,因为=,所以各层中依次抽取的人数分别是=8, =16, =10, =4.

知识点

分层抽样方法
1
题型:简答题
|
简答题 · 12 分

17.一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如右表(单(辆)位: 按类型分层抽样的方法在这个月生产的轿车中抽取50辆, 其中有A类轿车10辆

(1)求z的值;

(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;

(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,  8.6, 9.2,  9.6,  8.7,  9.3,  9.0,  8.2.把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率。

正确答案

解: (1)设该厂本月生产轿车为n辆,由题意得,,

所以n=2000. z=2000-100-300-150-450-600=400

(2)设所抽样本中有m辆舒适型轿车,

因为用分层抽样的方法在C类轿车中抽取一个容量为5的样本,

所以,解得m=2也就是抽取了2辆舒适型轿车,3辆标准型轿车,分别记作S1,S2;B1,B2,B3,

则从中任取2辆的所有基本事件为

(S1, B1), (S1, B2) , (S1, B3) (S2 ,B1), (S2 ,B2),

 (S2 ,B3),( (S1, S2),(B1 ,B2), (B2 ,B3) ,(B1 ,B3)共10个,

其中至少有1辆舒适型轿车的基本事件有7个基本事件: 

(S1, B1), (S1, B2) , (S1, B3) (S2 ,B1), (S2 ,B2), (S2 ,B3),( (S1, S2),

所以从中任取2辆,至少有1辆舒适型轿车的概率为.

(3)样本的平均数为,

那么与样本平均数之差的绝对值不超过0.5的数为

9.4,  8.6,   9.2,  8.7,  9.3,  9.0这6个数,总的个数为8,

所以该数与样本平均数之差的绝对值不超过0.5的概率为.

解析

解析已在路上飞奔,马上就到!

知识点

古典概型的概率分层抽样方法
1
题型:简答题
|
简答题 · 5 分

13.给出下列命题: ①线性相关系数r越大,两个变量的线性相关性越强;反之,线性相关性越弱; ②由变量x和y的数据得到其回归直线方程L:y =bx + a,则L一定经过点P(x,y);③从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;④在回归分析模型中,残差平方和越小,说明模型的拟合效果越好;⑤在回归直线方程y = 0.lx + 10中,当解释变量x每增加一个单位时,预报变量y增加0.1 个单位,其中真命题的序号是      .

正确答案

②④⑤.

解析

①线性相关系数|r|越大,两个变量的线性相关性越强,故①不正确;
②由变量x和y的数据得到其回归直线方程l:y=bx+a,则l一定经过点P故②正确;
③从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样不是分层抽样,故③不正确;

④可用残差平方和判断模型的拟合效果,残差平方和越小,模型的拟合效果越好,故④正确;
⑤在回归直线方程y=0.1x+10中,当解释变量x每增加一个单位时,预报变量平均增加0.1个单位,故⑤正确.

考查方向

本题线性相关、回归直线方程和拟合等相关概念。

解题思路

认真读题,挨个判断命题的真假

易错点

对上述概念理解的不透彻

知识点

命题的真假判断与应用分层抽样方法线性回归方程独立性检验相关系数
1
题型:简答题
|
简答题 · 12 分

18.为了整顿道路交通秩序,某地考虑将对行人闯红灯进行处罚.为了更好地了解市民的态度,在普通行人中随机选取了200人进行调查,当不处罚时,有80人会闯红灯,处罚时,得到如下数据:若用表中数据所得频率代替概率.

(Ⅰ)当罚金定为10元时,行人闯红灯的概率会比不进行处罚降低多少?

(Ⅱ)将选取的200人中会闯红灯的市民分为两类:A类市民在罚金不超过10元时就会改正行为;B类是其他市民.现对A类与B类市民按分层抽样的方法抽取4人依次进行深度问卷,则前两位均为B类市民的概率是多少?

正确答案

(1)会降低;(2)

解析

⑴设“当罚金定为10元时,闯红灯的市民改正行为”为事件, 则 

∴当罚金定为10元时,比不制定处罚,行人闯红灯的概率会降低

⑵由题可知类市民和类市民各有40人,故分别从类市民和类市民各抽出两人,设从类市民抽出的两人分别为,设从类市民抽出的两人分别为.设从“类与类市民按分层抽样的方法抽取4人依次进行深度问卷”为事件,则事件中首先抽出的事件有: ,共6种.同理首先抽出的事件也各有6种.故事件共有种. 设从“抽取4人中前两位均为类市民”为事件,则事件.

∴抽取4人中前两位均为类市民的概率是. 。

考查方向

本题考查了概率统计问题.属于高考中的高频考点

解题思路

1、求出相应的概率

2、利用列举法求解。

易错点

概率表示。

知识点

古典概型的概率分层抽样方法
下一知识点 : 系统抽样方法
百度题库 > 高考 > 文科数学 > 分层抽样方法

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题