热门试卷

X 查看更多试卷
1
题型:填空题
|
填空题

如图,在△ABC中,AB=AC=13,BC=10,D是AB的中点,过点D作DE^AC

于点E,则DE的长是     .

正确答案

1
题型:简答题
|
简答题

选修41:几何证明选讲

如图,设AB为⊙O的任意一条不与直线l垂直的直径,P是⊙O与l的公共点,AC⊥l,BD⊥l,垂足分别为C,D,且PC=PD.

求证:(1) l是⊙O的切线;(2) PB平分∠ABD.

正确答案

(1) 连接OP,∵AC⊥l,BD⊥l,∴AC∥BD.

又OA=OB,PC=PD,∴OP∥BP,从而OP⊥l.

∵P在⊙O上,∴l是⊙O的切线.(6分)

(2) 连接AP,∵l是⊙O的切线,

∴∠BPD=∠BAP.

又∠BPD+∠PBD=90°,∠BAP+∠PBA=90°,

∴∠PBA=∠PBD,即PB平分∠ABD.(10分)

1
题型:简答题
|
简答题

(14分)在直角坐标系中,以O为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.圆O的参数方程为,(为参数,

(1)求圆心的极坐标;

(2)当为何值时,圆O上的点到直线的最大距离为3.

正确答案

解:(1)圆心坐标为------2分

设圆心的极坐标为

----4分

所以圆心的极坐标为------ 6分

(2)直线的极坐标方程为

直线的普通方程为----8分

圆上的点到直线的距离……10分

-----11分

圆上的点到直线的最大距离为-----13分

---- 14分

1
题型:简答题
|
简答题

(本小题满分10分)选修4-1:几何证明选讲

如图,的角平分线的延长线交它的外接圆于点.

(Ⅰ)证明:

(Ⅱ)若的面积,求的大小.

正确答案

(Ⅰ)证明见解析

(Ⅱ)90°

本题主要考查平面几何中与圆有关的定理及性质的应用、三角形相似及性质的应用.

证明:(Ⅰ)由已知条件,可得∠BAE=∠CAD

因为∠AEB与∠ACB是同弧上的圆周角,所以∠AEB=∠ACD

故△ABE∽△ADC

(Ⅱ)因为△ABE∽△ADC,所以,即AB·ACAD·AE

SAB·ACsin∠BAC,且SAD·AE,故AB·ACsin∠BACAD·AE

则sin∠BAC=1,又∠BAC为三角形内角,所以∠BAC=90°.

【点评】在圆的有关问题中经常要用到弦切角定理、圆周角定理、相交弦定理等结论,解题时要注意根据已知条件进行灵活的选择,同时三角形相似是证明一些与比例有关问题的的最好的方法.

1
题型:填空题
|
填空题

如图,已知AB和AC是圆的两条弦,过点B作圆的切线与AC的延长线相交于点D.过点C作BD的平行线与圆相交于点E,与AB相交于点F,AF=3,FB=1,EF=,则线段CD的长为________.

正确答案

如图,由相交弦定理得AF·FB=EF·FC,

∴FC==2,

∵FC∥BD,∴,BD=.

又由切割线定理知BD2=DC·DA,

又由DA=4CD知4DC2=BD2,∴DC=.

明确相交弦定理、切割线定理等是解题的关键.

百度题库 > 高考 > 数学 > 平面与圆锥面的截线

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题