热门试卷

X 查看更多试卷
1
题型: 单选题
|
单选题

设曲线y=ex与两坐标轴及直线x=1所围成图形的面积为S1,曲线y=x-1与直线y=0,x=e及x=e3所围成图形的面积为S2,则S1与S2的大小关系为(  )

AS1>S2

BS1<S2

CS1=S2

D无法确定

正确答案

B

解析

解:如下图:

S1==e-1,S2==3-1=2,

∴S1<S2

故选B.

1
题型: 单选题
|
单选题

设函数y=f(x)的定义域为R+,若对于给定的正数k,定义函数:,则当函数时,函数fk(x)的图象与直线,x=2,y=0围成的图形的面积为(  )

A2ln2+2

B2ln2-1

C2ln2

D2ln2+1

正确答案

D

解析

解:因为函数f(x)=,K=1时,

∴f1(x)=⇒f1(x)=

∴函数fk(x)的图象与直线,x=2,y=0围成的图形的面积为:

 (x)dx=+∫121dx=1+2ln2

故选D

1
题型:简答题
|
简答题

如图,直线y=kx分抛物线y=x-x2与x轴所围图形为面积相等的两部分,求k的值.

正确答案

解:由 (0<k<1).

由题设得∫01-k[(x-x2)-kx]dx=01(x-x2)dx即∫01-k[(x-x2)-kx]dx=-)|01=

∴(1-k)3=-

∴k=1-

∴直线方程为y=(1-)x.

故k的值为:

解析

解:由 (0<k<1).

由题设得∫01-k[(x-x2)-kx]dx=01(x-x2)dx即∫01-k[(x-x2)-kx]dx=-)|01=

∴(1-k)3=-

∴k=1-

∴直线方程为y=(1-)x.

故k的值为:

1
题型:填空题
|
填空题

(2015春•九江期末)曲线y=sinx与直线y=x所围成的平面图形的面积是______

正确答案

2-

解析

解:分别画出直线y=x与曲线y=sinx,如图所示,

则y=x与曲线y=sinx的交点坐标是(-,0),(0,0),(,0),

∴直线y=x与曲线y=sinx围成的区域面积S=2(sinx-x)dx=2(-cosx-x2)|=2[(0-)+1]|=2-

故答案为:2-

1
题型:填空题
|
填空题

曲线所围成的图形的面积等于______

正确答案

ln2

解析

解:由,可得交点坐标为(1,1);

,可得交点坐标为(2,),

∴曲线所围成的图形的面积等于S===ln2.

故答案为:ln2.

1
题型: 单选题
|
单选题

如图,由所围成阴影部分面积为(  ) 

A

B

C

D

正确答案

B

解析

解:由,可得x=±,可得y=1,

∴S=+=(+(=+=

故选:B.

1
题型: 单选题
|
单选题

曲线y=x于y=x3围成的封闭区域的面积是(  )

A1

B

C

D

正确答案

B

解析

解:如图

曲线y=x于y=x3围成的封闭区域为图中阴影部分,其面积为2=2()|=

故选B.

1
题型: 单选题
|
单选题

一物体在力F(x)=(单位:N)的作用下沿与力F相同的方向,从x=0处运动到x=4(单位:m)处,则力F(x)作的功为(  )

A44

B46

C48

D50

正确答案

B

解析

解:W=∫04F(x)dx=∫0210dx+∫24(3x+4)dx=10x|02+(x2+4x)|24=46

故选B

1
题型: 单选题
|
单选题

若a,b∈(0,1),则函数f(x)=x2-2ax+b在R上没零点的概率为(  )

A

B

C

D

正确答案

D

解析

解:∵函数f(x)=x2-2ax+b在R上没零点,

∴△=4(a2-b)<0

即a2-b<0

b>a2

∵a,b∈(0,1),b>a2

∴s阴影=1-x2dx=1-x3|=1′-

概率为=

故选:D

1
题型:简答题
|
简答题

利用随机模拟的方法近似计算图形的面积:y=x2+1与y=6所围区域的面积.

正确答案

解:①利用计算器或计算机产生两组0至1之间的均匀随机数,a1=rand,b1=rand;

②进行平移和伸缩变换,

a=(a1-0.5)*2

b=5*b1+1;

③数出落在阴影内的样本点数N1,总试验次数为N,用几何概型公式计算阴影部分的面积为S=

解析

解:①利用计算器或计算机产生两组0至1之间的均匀随机数,a1=rand,b1=rand;

②进行平移和伸缩变换,

a=(a1-0.5)*2

b=5*b1+1;

③数出落在阴影内的样本点数N1,总试验次数为N,用几何概型公式计算阴影部分的面积为S=

百度题库 > 高考 > 数学 > 定积分的简单应用

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题