- 圆锥曲线的综合问题
- 共478题
21.已知圆经过椭圆
的右焦点
及上顶点
。
(1)求椭圆的方程;
(2)过椭圆外一点倾斜角为
的直线
交椭圆于
.
两点,若点
在以线段
为直径的圆
的外部,求
的取值范围。
正确答案
(1)与
轴、
轴交点为
和
,
,
椭圆方程为:
(2)设直线的方程为:
(
)
可得:
可得:即
设,
,
则,
化简得:
可得:,
取值范围为
解析
解析已在路上飞奔,马上就到!
知识点
20.已知圆的圆心在坐标原点
,且恰好与直线
相切.
(1)求圆的标准方程;
(2)设点为圆上一动点,
轴于
,若动点
满足
,其中
为非零常数,试求动点
的轨迹方程
;
(3)在(2)的结论下,当时,得到动点
的轨迹曲线
,与
垂直的直线
与曲线
交于
两点,求
面积的最大值.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
20. 如图,已知定点,点
是定直线
上的动点,∠
的角平分线交
于
.
(1)求点的轨迹方程;
(2)若(1)中轨迹上是否存在一点
,直线
与
,使得∠
是直角?如果存在,求点
坐标;如果不存在,请说明理由。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
20.如图,椭圆C:(a>b>0)的离心率e=
,左焦点为F,A,B,C为其三个顶点,直线CF与AB交于点D,若△ADC的面积为15.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在分别以AD,AC为弦的两个相外切的等圆?若存在,求出这两个圆的圆心坐标;若不存在,请说明理由.
正确答案
(Ⅰ)解:设左焦点F的坐标为(-c,0),其中c=,
∵e=,∴a=
c,b=
c.
∴A(0,c),B(-
c,0),C(0,-
c),
∴AB:,CF:
,
联立解得D点的坐标为(-c,
c).
∵△ADC的面积为15,∴|xD|·|AC|=15,即
·
c·2·
c=15,
解得c=3,∴a=5,b=4,∴椭圆C的方程为.
(Ⅱ)由(Ⅰ)知,A点的坐标为(0,4),D点的坐标为(-,1).
假设存在这样的两个圆M与圆N,其中AD是圆M的弦,AC是圆N的弦,
则点M在线段AD的垂直平分线上,点N在线段AC的垂直平分线y=0上.
当圆M和圆N是两个相外切的等圆时,一定有A,M,N在一条直线上,且AM=AN.
∴M、N关于点A对称,设M(x1,y1),则N(-x1,8-y1),
根据点N在直线y=0上,∴y1=8.∴M(x1,8),N(-x1,0),
而点M 在线段AD的垂直平分线y-=-
(x+
)上,可求x1=-
.
故存在这样的两个圆,且这两个圆的圆心坐标分别为
M(-,8),N(
0).
解析
解析已在路上飞奔,马上就到!
知识点
20.已知定点,B是圆
(C为圆心)上的动点,AB的垂直平分线与BC交于点E.
(1)求动点E的轨迹方程;
(2)设直线与E的轨迹交于P,Q两点,且以PQ为对角线的菱形的一顶点为(-1,0),求:
OPQ面积的最大值及此时直线
的方程.
正确答案
解:(1)由题知
又
点E的轨迹是以A,C为焦点,长轴长为4的椭圆,
E的轨迹方程为
(2)设,PQ的中点为
将直线与
联立得
,即
①
又
依题意有,整理得
②
由①②可得,
设O到直线的距离为
,则
当时,
的面积取最大值1,此时
,
直线方程为
解析
解析已在路上飞奔,马上就到!
知识点
16.已知点,直线
,动点
到点
的距离等于它到直线
的距离.
(Ⅰ)试判断点的轨迹
的形状,并写出其方程.
(Ⅱ)是否存在过的直线
,使得直线
被截得的弦
恰好被点
所平分?
正确答案
(Ⅰ)因点到点
的距离等于它到直线
的距离,
所以点的轨迹
是以
为焦点、直线
为准线的抛物线,其方程为
.
(Ⅱ)解法一:假设存在满足题设的直线.设直线
与轨迹
交于
,
依题意,得.
①当直线的斜率不存在时,不合题意.
②当直线的斜率存在时,设直线
的方程为
,
联立方程组,
消去,得
,(*)
∴,解得
.
此时,方程(*)为,其判别式大于零,
∴存在满足题设的直线
且直线的方程为:
即
.
解法二:假设存在满足题设的直线.设直线
与轨迹
交于
,
依题意,得.
易判断直线不可能垂直
轴,
∴设直线的方程为
,
联立方程组,
消去,得
,
∵,
∴直线与轨迹必相交.
又,∴
.
∴存在满足题设的直线
且直线的方程为:
即
.
解法三:假设存在满足题设的直线.设直线
与轨迹
交于
,
依题意,得.
∵在轨迹
上,
∴有,将
,得
.
当时,弦
的中点不是
,不合题意,
∴,即直线
的斜率
,
注意到点在曲线
的张口内(或:经检验,直线
与轨迹
相交)
∴存在满足题设的直线
且直线的方程为:
即
.
解析
解析已在路上飞奔,马上就到!
知识点
23.给定椭圆,称圆心在原点
,半径为
的圆是椭圆
的“准圆”。若椭圆
的一个焦点为
,其短轴上的一个端点到
的距离为
(1)求椭圆的方程和其“准圆”方程;
(2)点是椭圆
的“准圆”上的一个动点,过点
作直线
,使得
与椭圆
都只有一个交点,且
分别交其“准圆”于点
①当为“准圆”与
轴正半轴的交点时,求
的方程;
②求证:为定值
正确答案
(1)
所以,椭圆方程:,
准圆方程:
(2)①易知且直线斜率存在,
设直线为
联立
因为椭圆与直线有且只有一个交点,
所以,因此
所以的方程为
②<ⅰ>当的斜率存在时,设点
,
设直线
由---(*)
同理,联立和椭圆方程可得:
---(**)
由(*)(**)可知,是方程
的两个根
,
因此是准圆的直径,所以
<ⅱ>当中有一条斜率不存在时,
,此时
所以
解析
解析已在路上飞奔,马上就到!
知识点
21.如图,圆与
轴的正半轴交于点
,
是圆上的动点,
点在
轴上的投影是
,点
满足
(1)求动点的轨迹
的方程,并说明轨迹是什么图形;
(2)过点的直线
与
点的轨迹
交于不同的两点
、
,若
,求直线
的方程
正确答案
(1)设,
则由题意得轴且M是DP的中点,
所以
又P在圆上,所以
,即
,即
轨迹是以与
为焦点,
长轴长为4的椭圆。
(2)方法一:当直线的斜率不存在时,
,不满足题意。
设直线方程为
,
代入椭圆方程得:
△
设,
则 (*)
由知E是BF中点,
所以 (**)
由(*)、(**)
解得满足
,
所以
即所求直线方程为:
解析
解析已在路上飞奔,马上就到!
知识点
21.已知椭圆的中心在坐标原点O,焦点在x轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点,过右焦点F与x轴不垂直的直线l交椭圆于P,Q两点.
(1)求椭圆的方程;
(2)在线段OF上是否存在点M(m,0),使得以MP,MQ为邻边的平行四边形是菱形?若存在,求出m的取值范围;若不存在,请说明理由.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
20.如图,已知抛物线的准线为
,焦点为
,圆
的圆心在
轴的正半轴上,圆
与
轴相切,过原点
作倾斜角为
的直线
,交直线
于点
,交圆
于不同的两点
,且
。
(1)求圆和抛物线
的方程;
(2)若为抛物线
上的动点,求
的最小值;
(3)过直线上的动点
向圆
作切线,切点分别为
,求证:直线
恒过一个定点,并求该定点的坐标.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
扫码查看完整答案与解析