热门试卷

X 查看更多试卷
1
题型:填空题
|
填空题

若双曲线的焦点为F1(-4,0),F2(4,0),实轴长与虚轴长相等,则双曲线的标准方程为:______.

正确答案

由于实轴长与虚轴长相等,

则可设等轴双曲线方程为x2-y2=a(a>0),

化成标准方程:-=1

由标准方程得:c==4,

∴a=8

∴所求的等轴双曲线方程为-=1,

故答案为:-=1.

1
题型:填空题
|
填空题

与椭圆+=1共焦点的等轴双曲线的方程为______.

正确答案

对于+=1知半焦距为c==

所以双曲线的焦点为(±,0)

设等轴双曲线的方程为-=1

据双曲线的三参数的关系得到2a2=2

所以a2=1

所以双曲线的方程为x2-y2=1.

故答案为:x2-y2=1

1
题型:填空题
|
填空题

如图,已知双曲线以长方形ABCD的顶点A,B为左、右焦点,且过C,D两顶点.若AB=4,BC=3,则此双曲线的标准方程为______.

正确答案

由题意可得点OA=OB=2,AC=5

设双曲线的标准方程是 -=1.

则2a=AC-BC=5-3=2,

所以a=1.

所以b2=c2-a2=4-1=3.

所以双曲线的标准方程是 x2-=1.

故答案为:x2-=1

1
题型:填空题
|
填空题

若双曲线的一条渐近线方程是x+y=0,且过点(-6,4),则双曲线标准方程是______.

正确答案

根据题意,双曲线的一条渐近线方程为x+y=0,

设双曲线方程为-=λ(λ≠0),

∵双曲线过点(-6,4),

-=λ,即λ=1.

∴所求双曲线方程为:-=1.

故答案为:-=1.

1
题型:填空题
|
填空题

在△ABC中,BC=AB,∠ABC=120°,则以A,B为焦点且过点C的双曲线的离心率为______.

正确答案

由题意知,AB=2c,又△ABC中,BC=AB,∠ABC=120°,

∴AC=2c,∵双曲线以A,B为焦点且过点C,由双曲线的定义知,

AC-BC=2a,即:2c-2c=2a,

=,即:双曲线的离心率为

故答案为

下一知识点 : 椭圆的性质(顶点、范围、对称性、离心率、渐近线)
百度题库 > 高考 > 数学 > 双曲线的标准方程和图象

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题